Reflection Positivity (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
139
Utgivningsdatum
2018-07-09
Upplaga
1st ed. 2018
Förlag
Springer International Publishing AG
Medarbetare
lafsson, Gestur
Illustratör/Fotograf
Bibliographie
Illustrationer
VIII, 139 p.
Dimensioner
235 x 155 x 8 mm
Vikt
236 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783319947549
Reflection Positivity (häftad)

Reflection Positivity

A Representation Theoretic Perspective

Häftad Engelska, 2018-07-09
549
Skickas inom 7-10 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
Refection Positivity is a central theme at the crossroads of Lie group representations, euclidean and abstract harmonic analysis, constructive quantum field theory, and stochastic processes. This book provides the first presentation of the representation theoretic aspects of Refection Positivity and discusses its connections to those different fields on a level suitable for doctoral students and researchers in related fields. It starts with a general introduction to the ideas and methods involving refection positive Hilbert spaces and the Osterwalder--Schrader transform. It then turns to Reflection Positivity in Lie group representations. Already the case of one-dimensional groups is extremely rich. For the real line it connects naturally with Lax--Phillips scattering theory and for the circle group it provides a new perspective on the Kubo--Martin--Schwinger (KMS) condition for states of operator algebras. For Lie groups Reflection Positivity connects unitary representations of a symmetric Lie group with unitary representations of its Cartan dual Lie group. A typical example is the duality between the Euclidean group E(n) and the Poincare group P(n) of special relativity. It discusses in particular the curved context of the duality between spheres and hyperbolic spaces. Further it presents some new integration techniques for representations of Lie algebras by unbounded operators which are needed for the passage to the dual group. Positive definite functions, kernels and distributions and used throughout as a central tool.
Visa hela texten

Passar bra ihop

  1. Reflection Positivity
  2. +
  3. Holomorphy and Convexity in Lie Theory

De som köpt den här boken har ofta också köpt Holomorphy and Convexity in Lie Theory av Karl-Hermann Neeb (inbunden).

Köp båda 2 för 3018 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Recensioner i media

"This small monograph by Karl-Hermann Neeb and Gestur Olafsson covers a wide range of problems concerning the concept of Reflection Positivity (RP). ... The monograph will be useful for both professional mathematicians as well as doctoral students." (Roman Urban, zbMATH 1403.22001, 2019)

Bloggat om Reflection Positivity

Innehållsförteckning

Preface.- Introduction.- Reflection positive Hilbert spaces.- Reflection positive Hilbert spaces.- Reflection positive subspaces as graphs.- The Markov condition.- Reflection positive kernels and distributions.- Reflection positivity in Riemannian geometry.- Selfadjoint extensions and reflection positivity.- Reflection positive representations.- The OS transform of linear operators.- Symmetric Lie groups and semigroups.- Reflection positive representations.- Reflection positive functions.- Reflection positivity on the real line.- Reflection positive functions on intervals.- Reflection positive one-parameter groups.- Reflection positive operator-valued functions.- A connection to Lax-Phillips scattering theory.- Reflection positivity on the circle.- Positive definite functions satisfying KMS conditions.- Reflection positive functions and KMS conditions.- Realization by resolvents of the Laplacian.- Integration of Lie algebra representations.- A geometric version of Frohlich's Selfadjointness Theorem.- Integrability for reproducing kernel spaces.- Representations on spaces of distributions.- Reflection positive distributions and representations.- Reflection positive distribution vectors.- Distribution vectors.- Reflection positive distribution vectors.- Spherical representation of the Lorentz group.- Generalized free fields.- Lorentz invariant measures on the light cone and their relatives.- From the Poincare group to the euclidean group.- The conformally invariant case.- Reflection positivity and stochastic processes.- Reflection positive group actions on measure spaces.- Stochastic processes indexed by Lie groups.- Associated positive semigroup structures and reconstruction.- A Background material.- A.1 Positive definite kernels.- A.2 Integral representations.- Index.