Sustainable Resource Management (inbunden)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
832
Utgivningsdatum
2021-04-21
Upplaga
2 Volumes
Förlag
Blackwell Verlag GmbH
Medarbetare
Guo, Wenshan (ed.), Ngo, Huu Hao (ed.), Surampalli, Rao Y. (ed.), Zhang, Tian C. (ed.)
Illustratör/Fotograf
250 farbige Abbildungen
Illustrationer
250 farbige Abbildungen
Dimensioner
244 x 170 x 43 mm
Vikt
1498 g
Antal komponenter
1
Komponenter
1369:Standard Color 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Case Laminate on White w/Gloss La
ISBN
9783527347223

Sustainable Resource Management

Technologies for Recovery and Reuse of Energy and Waste Materials

Inbunden,  Engelska, 2021-04-21
4583
  • Specialorder (osäker tillgång). Skickas från oss inom 11-20 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 2 format & utgåvor
Sustainable Resource Management Learn how current technologies can be used to recover and reuse waste products to reduce environmental damage and pollution In this two-volume set, Sustainable Resource Management: Technologies for Recovery and Reuse of Energy and Waste Materials delivers a compelling argument for the importance of the widespread adoption of a holistic approach to enhanced water, energy, and waste management practices. Increased population and economic growth, urbanization, and industrialization have put sustained pressure on the worlds environment, and this book demonstrates how to use organics, nutrients, and thermal heat to better manage wastewater and solid waste to deal with that reality. The book discusses basic scientific principles and recent technological advances in current strategies for resource recovery from waste products. It also presents solutions to pressing problems associated with energy production during waste management and treatment, as well as the health impacts created by improper waste disposal and pollution. Finally, the book discusses the potential and feasibility of turning waste products into resources. Readers will also enjoy: A thorough introduction and overview to resource recovery and reuse for sustainable futures An exploration of hydrothermal liquefaction of food waste, including the technologys use as a potential resource recovery strategy A treatment of resource recovery and recycling from livestock manure, including the current state of the technology and future prospects and challenges A discussion of the removal and recovery of nutrients using low-cost adsorbents from single-component and multi-component adsorption systems Perfect for water and environmental chemists, engineers, biotechnologists, and food chemists, Sustainable Resource Management also belongs on the bookshelves of environmental officers and consultants, chemists in private industry, and graduate students taking programs in environmental engineering, ecology, or other sustainability related fields.
Visa hela texten

Passar bra ihop

  1. Sustainable Resource Management
  2. +
  3. The Anxious Generation

De som köpt den här boken har ofta också köpt The Anxious Generation av Jonathan Haidt (inbunden).

Köp båda 2 för 4872 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Övrig information

Wenshan Guo, PhD, is Professor and a core member in the Centre for Technology in Water and Wastewater at the University of Technology Sydney. Huu Hao Ngo, PhD, is Professor of Environmental Engineering and serving as Deputy Director of the Centre for Technology in Water and Wastewater at the University of Technology Sydney. Rao Y. Surampalli, PhD, is President and Chief Executive Officer of the Global Institute for Energy, Environment, and Sustainability. Tian C. Zhang, PhD, is Professor in the Department of Civil Engineering at the University of Nebraska-Lincoln in the United States.

Innehållsförteckning

Volume 1 Preface xix 1 Resource Recovery and Reuse for Sustainable Future Introduction and Overview 1 Wenshan Guo, Huu Hao Ngo, Lijuan Deng, Rao Y. Surampalli, and Tian C. Zhang 1.1 Introduction 1 1.2 Background 2 1.2.1 Hierarchy of Resource Use 2 1.2.2 Analyzing the Needs for Resource and Energy Recovery and Reuse 2 1.2.2.1 Population Growth 2 1.2.2.2 Resource Scarcity 4 1.2.2.3 Environmental Impacts 4 1.2.2.4 Economical Aspect 4 1.3 Current Status of Resource Recovery and Reuse 5 1.3.1 Wastewater 5 1.3.1.1 Nutrient Recovery 6 1.3.1.2 Organic Carbon Recovery 6 1.3.1.3 Heat Recovery 7 1.3.2 Waste 7 1.4 Research Needs 9 1.4.1 Development of Novel Technologies 9 1.4.2 Social and Economic Feasibility of Resource Recovery and Reuse 9 1.4.3 Development of Internationally Coordinated Framework and Strategy 10 1.5 Book Overview 10 References 17 2 Hydrothermal Liquefaction of Food Waste: A Potential Resource Recovery Strategy 21 Ranaprathap Katakojwala, Hari Shankar Kopperi, Althuri Avanthi, and S. Venkata Mohan 2.1 Introduction 21 2.1.1 Global Food Waste Production 22 2.1.2 Conventional Food Waste Management Practices 23 2.1.2.1 Land Filling 23 2.1.2.2 Fertilizer/Animal Feed 23 2.1.2.3 Incineration 23 2.1.2.4 Composting 24 2.1.3 Advanced Food Waste Management Methods 24 2.1.3.1 Acidogenesis 24 2.1.3.2 Solventogenesis 24 2.1.3.3 Biodiesel 25 2.1.3.4 Bioplastics 26 2.2 Significance of Hydrothermal Liquefaction of Food Waste 26 2.2.1 HTL Reactor Operation 27 2.2.2 Isothermal HTL and Fast HTL 30 2.2.3 HTL Products 30 2.2.4 Greenhouse Gas Emissions 31 2.3 Factors Influencing HTL During FW Treatment 32 2.3.1 Temperature 34 2.3.2 Reaction Time 35 2.3.3 Solid-to-Solvent Ratio 35 2.3.4 Composition of Food Waste 36 2.3.5 Catalyst Concentration 36 2.4 HTL of Food Waste: Case Studies 37 2.5 Conclusions and Future Scope 39 Acknowledgement 40 References 40 3 Coping with Change: (Re) Evolution of Waste Management in Local Authorities in England 47 Pauline Deutz and Anne Kildunne 3.1 Introduction 47 3.2 Sustainability Transitions Literature 48 3.3 Waste Management in England 51 3.4 Research Design and Methods 52 3.4.1 Research Design 53 3.4.2 Methods 53 3.4.3 Selection of Interviewees 54 3.4.4 Secondary Data 58 3.5 Results and Discussion 58 3.5.1 English Waste in the Context of the EU 58 3.5.2 Influences in the UK Context for LAs 64 3.5.3 Implementation of the 2000 Waste Strategy 66 3.5.3.1 LA Implementation of Waste Policy 67 3.5.3.2 Targets 70 3.5.3.3 Financial Instruments 70 3.5.3.4 Regional Governance 72 3.5.4 Local Authorities and the Public 72 3.5.5 Legacy of the Strategy 74 3.6 Conclusions 75 Acknowledgements 77 References 77 4 Hydrothermal Liquefaction of Lignocellulosic Biomass for Bioenergy Production 83 Huihui Chen, Gang Luo, and Shicheng Zhang 4.1 Introduction 83 4.2 Composition of Lignocellulosic Biomass and their Degradation in HTL Processes 85 4.2.1 Composition of Lignocellulosic Biomass 85 4.2.2 Brief Review on the Development of HTL Technology 85 4.2.3 Main Components Degradation of the Lignocellulosic Biomass During HTL 87 4.2.3.1 Cellulose and its Degradation in HTL Processes 87 4.2.3.2 Hemicellulose and its Degradation in HTC Process 88 4.2.3.3 Lignin and its Degradation in HTC Processes 88 4.3 Research Status in HTL of Lignocellulosic Biomass 90 4.3.1 Products Description 90 4.3.1.1 Bio-oil 90 4.3.1.2 Solid Residue 90 4.3.1.3 Other By-products 91 4.3.2 Operating Parameters for Bio-oil Production by HTL 91 4.3.2.1 Bio-oil 92 4.3.2.2 Temperature 93 4.3.2.3 Heating Rate 93 4.3.2.4 Residence Time 94 4.3.2.5 Pressure 94 4.3.2.6 Catalysts 95 4.3.2.7 Liquid-to-Solid Ratio 96 4.4 Limitations and Prospects for Bioenergy Production from Lignocellulosic Biomass by HTL 97 4.4.1 Poor Quality of Crude Bio-oil 97 4.4.2 Aqueous By-products Utilization 97