Group Theory in Solid State Physics and Photonics - Problem Solving with Mathematica (häftad)
Häftad (Paperback / softback)
Antal sidor
Wiley-VCH Verlag GmbH
100 schwarz-weiße Abbildungen
100 schwarz-weiße Abbildungen
241 x 170 x 18 mm
749 g
Antal komponenter
67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam
Group Theory in Solid State Physics and Photonics - Problem Solving with Mathematica (häftad)

Group Theory in Solid State Physics and Photonics - Problem Solving with Mathematica

Häftad Engelska, 2018-06-20
  • Skickas inom 10-15 vardagar.
  • Gratis frakt inom Sverige över 199 kr för privatpersoner.
While group theory and its application to solid state physics is well established, this textbook raises two completely new aspects. First, it provides a better understanding by focusing on problem solving and making extensive use of Mathematica tools to visualize the concepts. Second, it offers a new tool for the photonics community by transferring the concepts of group theory and its application to photonic crystals. Clearly divided into three parts, the first provides the basics of group theory. Even at this stage, the authors go beyond the widely used standard examples to show the broad field of applications. Part II is devoted to applications in condensed matter physics, i.e. the electronic structure of materials. Combining the application of the computer algebra system Mathematica with pen and paper derivations leads to a better and faster understanding. The exhaustive discussion shows that the basics of group theory can also be applied to a totally different field, as seen in Part III. Here, photonic applications are discussed in parallel to the electronic case, with the focus on photonic crystals in two and three dimensions, as well as being partially expanded to other problems in the field of photonics. The authors have developed Mathematica package GTPack which is available for download from the book's homepage. Analytic considerations, numerical calculations and visualization are carried out using the same software. While the use of the Mathematica tools are demonstrated on elementary examples, they can equally be applied to more complicated tasks resulting from the reader's own research.
Visa hela texten

Passar bra ihop

  1. Group Theory in Solid State Physics and Photonics - Problem Solving with Mathematica
  2. +
  3. The Psychology of Totalitarianism

De som köpt den här boken har ofta också köpt The Psychology of Totalitarianism av Mattias Desmet (inbunden).

Köp båda 2 för 1277 kr


Har du läst boken? Sätt ditt betyg »

Övrig information

Wolfram Hergert, extraordinary professor in Computational Physics, is member of the Theoretical Physics group at University Halle-Wittenberg, Germany. Main subjects of his work are solid state theory, electronic and magnetic structure of nanostructures and photonics. Prof. Hergert has experience in teaching group theory and in applying Mathematica to physical problems. He has published in renowned journals, like Nature and Physical Review Letters, and edited a books on Computational Materials Science and Mie Theory. He is also coauthor of a book on Quantum Theory. Matthias Geilhufe studied physics at the Martin Luther University Halle-Wittenberg (Germany) with specialization in theoretical and computational physics. From 2012-2015 he was employed as a PhD student at the Max Planck Institute of Microstructure Physics in Halle. In 2015 he obtained his PhD at the Martin Luther University Halle-Wittenberg. Currently, he is working at the Nordita Institute in Stockholm, Sweden. His work is based on the investigation of electronic and magnetic properties of complex materials. For his research, methods based on group theory or density functional theory are applied.


1 Preface 2 Introduction I Basics of group theory 3 Symmetry operations and transformations of fields 4 Basic abstract group theory 5 Discrete symmetry groups for solid state physics and photonics 6 Representation theory 7 Symmetry in k-space II Applications in electronic structure theory 8 Solution of the Schroedinger equation 9 Generalization to include the spin 10 Electronic energy bands III Applications in photonics 11 Solution of Maxwell's equations 12 Twodimensional photonic crystals 13 Threedimensional photonic crystals 14 Other Applications A Mathematica Package Reference B Connection of the group theory package to MPB and MEEP