Group Representations in Mathematics and Physics (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
343
Utgivningsdatum
1970-01-01
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Medarbetare
Bargmann, V. (red.)
Illustrationer
1 Illustrations, black and white; V, 343 p. 1 illus.
Dimensioner
254 x 178 x 19 mm
Vikt
613 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783540053101
Group Representations in Mathematics and Physics (häftad)

Group Representations in Mathematics and Physics

Battelle Seattle 1969 Rencontres

Häftad Engelska, 1970-01-01
1119
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Restrictions of unitary representations to subgroups and Ergodic theory: Group extensions and group cohomology.- Applications of group theory to quantum physics algebraic aspects.- Unitary representations of lie groups in quantum mechanics.- On certain unitary representations which arise from a quantization theory.- Derivation and solution of an infinite-component wave equation for the relativistic Coulomb problem.- Tensor operators for the group SL(2,C).- Lie algebras of local currents and their representations.- Infinite dimensional Lie algebras and current algebra.
Visa hela texten

Passar bra ihop

  1. Group Representations in Mathematics and Physics
  2. +
  3. Statistical Mechanics and Mathematical Problems

De som köpt den här boken har ofta också köpt Statistical Mechanics and Mathematical Problems av A Lenard (häftad).

Köp båda 2 för 2108 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Innehållsförteckning

Restrictions of unitary representations to subgroups and Ergodic theory: Group extensions and group cohomology.- Applications of group theory to quantum physics algebraic aspects.- Unitary representations of lie groups in quantum mechanics.- On certain unitary representations which arise from a quantization theory.- Derivation and solution of an infinite-component wave equation for the relativistic Coulomb problem.- Tensor operators for the group SL(2,C).- Lie algebras of local currents and their representations.- Infinite dimensional Lie algebras and current algebra.