Classic Works of the Dempster-Shafer Theory of Belief Functions (inbunden)
Inbunden (Hardback)
Antal sidor
2008 ed.
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Dempster, Arthur P. (ed.), Yager, Ronald (ed.), Liu, Liping (ed.)
43 Tables, black and white; 81 Illustrations, black and white; XIX, 806 p. 81 illus.
240 x 165 x 45 mm
1320 g
Antal komponenter
1 Hardback
Classic Works of the Dempster-Shafer Theory of Belief Functions (inbunden)

Classic Works of the Dempster-Shafer Theory of Belief Functions

Inbunden Engelska, 2008-02-01
  • Skickas inom 10-15 vardagar.
  • Gratis frakt inom Sverige över 159 kr för privatpersoner.
Kan tyvärr inte längre levereras innan julafton.
Finns även som
Visa alla 2 format & utgåvor
This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.
Visa hela texten

Passar bra ihop

  1. Classic Works of the Dempster-Shafer Theory of Belief Functions
  2. +
  3. The Ordered Weighted Averaging Operators

De som köpt den här boken har ofta också köpt The Ordered Weighted Averaging Operators av Ronald R Yager, J Kacprzyk (häftad).

Köp båda 2 för 5278 kr


Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna


Classic Works of the Dempster-Shafer Theory of Belief Functions: An Introduction.- New Methods for Reasoning Towards Posterior Distributions Based on Sample Data.- Upper and Lower Probabilities Induced by a Multivalued Mapping.- A Generalization of Bayesian Inference.- On Random Sets and Belief Functions.- Non-Additive Probabilities in the Work of Bernoulli and Lambert.- Allocations of Probability.- Computational Methods for A Mathematical Theory of Evidence.- Constructive Probability.- Belief Functions and Parametric Models.- Entropy and Specificity in a Mathematical Theory of Evidence.- A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space.- Languages and Designs for Probability Judgment.- A Set-Theoretic View of Belief Functions.- Weights of Evidence and Internal Conflict for Support Functions.- A Framework for Evidential-Reasoning Systems.- Epistemic Logics, Probability, and the Calculus of Evidence.- Implementing Dempster's Rule for Hierarchical Evidence.- Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Moebius Inversion.- Axioms for Probability and Belief-Function Propagation.- Generalizing the Dempster-Shafer Theory to Fuzzy Sets.- Bayesian Updating and Belief Functions.- Belief-Function Formulas for Audit Risk.- Decision Making Under Dempster-Shafer Uncertainties.- Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem.- Representation of Evidence by Hints.- Combining the Results of Several Neural Network Classifiers.- The Transferable Belief Model.- A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory.- Logicist Statistics II: Inference.