Data Mining for Biomedical Applications (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
155
Utgivningsdatum
2006-03-01
Upplaga
2006 ed.
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Medarbetare
Li, Jinyan (ed.), Yang, Qiang (ed.), Tan, Ah-Hwee (ed.)
Illustratör/Fotograf
Bibliographie
Illustrationer
VIII, 155 p.
Dimensioner
234 x 156 x 9 mm
Vikt
245 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISSN
0302-9743
ISBN
9783540331049
Data Mining for Biomedical Applications (häftad)

Data Mining for Biomedical Applications

PAKDD 2006 Workshop, BioDM 2006, Singapore, April 9, 2006, Proceedings

Häftad Engelska, 2006-03-01
849
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
This book constitutes the refereed proceedings of the International Workshop on Data Mining for Biomedical Applications, BioDM 2006, held in Singapore in conjunction with the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006). The 14 revised full papers presented together with one keynote talk were carefully reviewed and selected from 35 submissions. The papers are organized in topical sections
Visa hela texten

Passar bra ihop

  1. Data Mining for Biomedical Applications
  2. +
  3. Ubiquitous Intelligence and Computing

De som köpt den här boken har ofta också köpt Ubiquitous Intelligence and Computing av Daqing Zhang, Marius Portmann, Ah-Hwee Tan, Jadwiga Indulska (häftad).

Köp båda 2 för 1848 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om Data Mining for Biomedical Applications

Innehållsförteckning

Keynote Talk.- Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions.- Database and Search.- A Database Search Algorithm for Identification of Peptides with Multiple Charges Using Tandem Mass Spectrometry.- Filtering Bio-sequence Based on Sequence Descriptor.- Automatic Extraction of Genomic Glossary Triggered by Query.- Frequent Subsequence-Based Protein Localization.- Bio Data Clustering.- gTRICLUSTER: A More General and Effective 3D Clustering Algorithm for Gene-Sample-Time Microarray Data.- Automatic Orthologous-Protein-Clustering from Multiple Complete-Genomes by the Best Reciprocal BLAST Hits.- A Novel Clustering Method for Analysis of Gene Microarray Expression Data.- Heterogeneous Clustering Ensemble Method for Combining Different Cluster Results.- In-silico Diagnosis.- Rule Learning for Disease-Specific Biomarker Discovery from Clinical Proteomic Mass Spectra.- Machine Learning Techniques and Chi-Square Feature Selection for Cancer Classification Using SAGE Gene Expression Profiles.- Generation of Comprehensible Hypotheses from Gene Expression Data.- Classification of Brain Glioma by Using SVMs Bagging with Feature Selection.- Missing Value Imputation Framework for Microarray Significant Gene Selection and Class Prediction.- Informative MicroRNA Expression Patterns for Cancer Classification.