- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 252
- Utgivningsdatum
- 2006-03-01
- Upplaga
- 2006 ed.
- Förlag
- Springer-Verlag Berlin and Heidelberg GmbH & Co. K
- Medarbetare
- 3Bonchi, Francesco
- Illustratör/Fotograf
- Bibliographie
- Illustrationer
- VIII, 252 p.
- Dimensioner
- 234 x 156 x 14 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISSN
- 0302-9743
- ISBN
- 9783540332923
- 377 g
Du kanske gillar
-
Refactoring
Martin Fowler
InbundenKnowledge Discovery in Inductive Databases
4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Papers
829Skickas inom 3-6 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt Privacy, Security, and Trust in KDD av Francesco Bonchi, Elena Ferrari, Wei Jiang, Bradley Malin (häftad).
Köp båda 2 för 1658 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av författarna
-
Privacy-Aware Knowledge Discovery
Francesco Bonchi, Elena Ferrari
-
Machine Learning and Knowledge Discovery in Databases
Michele Berlingerio, Francesco Bonchi, Thomas Gartner, Neil Hurley, Georgiana Ifrim
-
Privacy, Security, and Trust in KDD
Francesco Bonchi, Elena Ferrari, Bradley Malin, Yucel Saygin
-
Machine Learning: ECML 2004
Jean-Francois Boulicaut, Floriana Esposito, Fosca Giannotti, Dino Pedreschi
Innehållsförteckning
Invited Papers.- Data Mining in Inductive Databases.- Mining Databases and Data Streams with Query Languages and Rules.- Contributed Papers.- Memory-Aware Frequent k-Itemset Mining.- Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data.- Experiment Databases: A Novel Methodology for Experimental Research.- Quick Inclusion-Exclusion.- Towards Mining Frequent Queries in Star Schemes.- Inductive Databases in the Relational Model: The Data as the Bridge.- Transaction Databases, Frequent Itemsets, and Their Condensed Representations.- Multi-class Correlated Pattern Mining.- Shaping SQL-Based Frequent Pattern Mining Algorithms.- Exploiting Virtual Patterns for Automatically Pruning the Search Space.- Constraint Based Induction of Multi-objective Regression Trees.- Learning Predictive Clustering Rules.