Homological Algebra (inbunden)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
222
Utgivningsdatum
1994-03-01
Upplaga
1994 ed.
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Översättare
S I Gelfand, Yu I Manin
Originalspråk
Russian
Medarbetare
Kostrikin, Aleksej I. (red.)/Shafarevich, I. R. (red.)
Illustratör/Fotograf
Bibliographie
Illustrationer
V, 222 p.
Volymtitel
v. 5
Dimensioner
234 x 156 x 14 mm
Vikt
508 g
Antal komponenter
1
Komponenter
1 Hardback
ISBN
9783540533733
Homological Algebra (inbunden)

Homological Algebra

Inbunden Engelska, 1994-03-01
1589
Skickas inom 10-15 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
Visa hela texten

Passar bra ihop

  1. Homological Algebra
  2. +
  3. Representations of Finite-Dimensional Algebras

De som köpt den här boken har ofta också köpt Representations of Finite-Dimensional Algebras av Peter Gabriel, Andrei V Roiter, A I Kostrikin, I R Shafarevich (inbunden).

Köp båda 2 för 3288 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

1. Complexes and Cohomology.- 2. The Language of Categories.- 3. Homology Groups in Algebra and in Geometry.- 4. Derived Categories and Derived Functors.- 5. Triangulated Categories.- 6. Mixed Hodge Structures.- 7. Perverse Sheaves.- 8. D-Modules.- References.- Author Index.