- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 196
- Utgivningsdatum
- 1991-05-01
- Upplaga
- Softcover reprint of the original 1st ed. 1991
- Förlag
- Springer-Verlag Berlin and Heidelberg GmbH & Co. K
- Illustrationer
- 1 Illustrations, black and white; VIII, 196 p. 1 illus.
- Dimensioner
- 244 x 170 x 11 mm
- Vikt
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISSN
- 0075-8442
- ISBN
- 9783540539018
- 345 g
Du kanske gillar
-
Sample Survey Theory
Paul Knottnerus
InbundenLinear Models with Correlated Disturbances
1349Skickas inom 10-15 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.Finns även somPassar bra ihop
De som köpt den här boken har ofta också köpt The Complex Dynamics of Economic Interaction av Mauro Gallegati, Alan P Kirman, Matteo Marsili (häftad).
Köp båda 2 för 3018 krKundrecensioner
Har du läst boken? Sätt ditt betyg »Fler böcker av Paul Knottnerus
-
Sample Survey Theory
Paul Knottnerus
This volume deals primarily with the classical question of how to draw conclusions about the population mean of a variable, given a sample with observations on that variable. Another classical question is how to use prior knowledge of an economic ...
Innehållsförteckning
I Introduction.- II Transformation Matrices and Maximum Likelihood Estimation of Regression Models with Correlated Disturbances.- 2.1 Introduction.- 2.2 The algebraic problem.- 2.3 A dual problem.- 2.4 Recursive methods for calculating the transformation matrix P.- 2.4.1 A recursive algorithm for calculating P.- 2.4.2 The recursive Levinson-Durbin algorithm.- 2.4.3 A supplementary Levinson-Durbin algorithm.- 2.4.4 Inversion of an arbitrary nonsingular matrix.- 2.5 The matrix P in the case of MA(1) disturbances.- 2.5.1 The matrix P.- 2.5.2 A new derivation of the inverse of the autocovariance matrix of an MA(1) process.- 2.6 The matrix P in the case of MA(q) disturbances.- 2.7 The matrix P in the case of ARMA(p,q) disturbances.- 2.7.1 A derivation of the formula for the autocovariance matrix of an ARMA(p,q) process.- 2.7.2 The matrix P in the case of ARMA(p,q) disturbances.- Appendix 2. A Linear vector spaces.- Appendix 2.B The formula for sstj if t is small.- III Computational Aspects of data Transformations and Ansley's Algorithm.- 3.1 Introduction.- 3.2 Recursive computations for models with MA(q) disturbances.- 3.3 Recursive computations for models with ARMA(p,q) disturbances.- 3.4 Ansley's method.- IV GLS Estimation by Kalman Filtering.- 4.1 Introduction.- 4.2 Some results from multivariate analysis.- 4.2.1 Likelihood functions.- 4.2.2 Conditional normal distributions and minimum variance estimators.- 4.3 The Kaiman filter equations.- 4.3.1 The state space model.- 4.3.2 A general geometric derivation of the Kaiman filter equations.- 4.3.3 Comparison with other derivations.- 4.4 The likelihood function.- 4.5 Estimation of linear models with ARMA(p,q) disturbances by means of Kaiman filtering.- 4.6 The exact likelihood function for models with ARMA(p,q) disturbances.- 4.7 Predictions and prediction intervals by using Kaiman filtering.- V Estimation of Regression Models with Missing Observations and Serially Correlated Disturbances.- 5.1 Introduction.- 5.2 The model.- 5.3 Derivation of the transformation matrix.- 5.4 Estimation and test procedures.- 5.4.1 Estimation.- 5.4.2 Tests for autocorrelation if observations are missing.- 5.4.2.1 The likelihood ratio test.- 5.4.2.2 The modified Lagrange multiplier (MLM) test.- 5.4.2.3 An infinite number of missing observations.- 5.4.2.4 The power of the MLM test.- 5.4.2.5 An adjusted Lagrange multiplier test.- 5.5 Kaiman filtering with missing observations.- Appendix 5.A Stationarity conditions for an AR(2) process.- VI Distributed lag Models and Correlated Disturbances.- 6.1 Introduction.- 6.2 The geometric distributed lag model.- 6.3 Estimation methods.- 6.4 A simple formula for Koyck's consistent two-step estimator.- 6.5 Efficient estimation of dynamic models.- 6.5.1 Introduction.- 6.5.2 An efficient 3-step Gauss-Newton estimation method.- 6.5.3 A Gauss-Newton-Prais-Winsten estimation method with small sample adjustments.- 6.6 Dynamic models with several geometric distributed lags.- 6.7 The Cramer-Rao inequality and the Pythagorean theorem.- VII Test Strategies for Discriminating Between Autocorrelation and Misspecification.- 7.1 Introduction.- 7.2 Thursby's test strategy.- 7.3 Comments on Thursby's test strategy.- 7.3.1 Introduction.- 7.3.2 The simple AR(2) disturbances model.- 7.3.3 The general disturbances model.- 7.4 Godfrey's test strategy.- 7.5 Comments on Godfrey's test strategy.- References.- Author Index.