Types for Proofs and Programs (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
210
Utgivningsdatum
1995-10-01
Upplaga
1995 ed.
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Medarbetare
Dybjer, Peter (ed.), Nordström, Bengt (ed.), Smith, Jan (ed.)
Illustratör/Fotograf
Mit Übers
Illustrationer
X, 210 p.
Dimensioner
234 x 156 x 12 mm
Vikt
318 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783540605799
Types for Proofs and Programs (häftad)

Types for Proofs and Programs

International Workshop TYPES '94, Bastad, Sweden, June 6-10, 1994. Selected Papers

Häftad Engelska, 1995-10-01
779
  • Skickas inom 10-15 vardagar.
  • Gratis frakt inom Sverige över 159 kr för privatpersoner.
This book presents a strictly refereed collection of revised full papers selected from the papers accepted for the TYPES '94 Workshop, held under the auspices of the ESPRIT Basic Research Action 6453 Types for Proofs and Programs in Bastad, Sweden, in June 1994. The 10 papers included address various aspects of developing computer-assisted proofs and programs using a logical framework. Type theory and three logical frameworks based on it are dealt with: ALF, Coq, and LEGO; other topics covered are metatheory, the Isabelle system, 2-calculus, proof checkers, and ZF set theory.
Visa hela texten

Passar bra ihop

  1. Types for Proofs and Programs
  2. +
  3. Advanced Functional Programming

De som köpt den här boken har ofta också köpt Advanced Functional Programming av Johan Jeuring, Erik Meijer (häftad).

Köp båda 2 för 1648 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

Communicating contexts: A pragmatic approach to information exchange.- A short and flexible proof of strong normalization for the calculus of constructions.- Codifying guarded definitions with recursive schemes.- The metatheory of UTT.- A user's friendly syntax to define recursive functions as typed ?-terms.- I/O automata in Isabelle/HOL.- A concrete final coalgebra theorem for ZF set theory.- On extensibility of proof checkers.- Syntactic categories in the language of mathematics.- Formalization of a ?-calculus with explicit substitutions in Coq.