Applied Graph Theory in Computer Vision and Pattern Recognition (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
266
Utgivningsdatum
2007-03-01
Upplaga
2007 ed.
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Medarbetare
Kandel, Abraham (ed.), Bunke, Horst (ed.), Last, Mark (ed.)
Illustratör/Fotograf
17 schwarz-weiße Tabellen 85 schwarz-weiße Abbildungen Bibliographie
Illustrationer
17 Tables, black and white; X, 266 p.
Dimensioner
240 x 160 x 20 mm
Vikt
660 g
Antal komponenter
1
Komponenter
1 Hardback
ISBN
9783540680192
Applied Graph Theory in Computer Vision and Pattern Recognition (inbunden)

Applied Graph Theory in Computer Vision and Pattern Recognition

Inbunden Engelska, 2007-03-01
1719
Skickas inom 3-6 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
This book presents novel graph-theoretic methods for complex computer vision and pattern recognition tasks. It presents the application of graph theory to low-level processing of digital images, presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, and provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks.
Visa hela texten

Passar bra ihop

  1. Applied Graph Theory in Computer Vision and Pattern Recognition
  2. +
  3. Applied Pattern Recognition

De som köpt den här boken har ofta också köpt Applied Pattern Recognition av Horst Bunke, Abraham Kandel, Mark Last (inbunden).

Köp båda 2 för 3688 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om Applied Graph Theory in Computer Vision a...

Innehållsförteckning

Applied Graph Theory for Low Level Image Processing and Segmentation.- Multiresolution Image Segmentations in Graph Pyramids.- A Graphical Model Framework for Image Segmentation.- Digital Topologies on Graphs.- Graph Similarity, Matching, and Learning for High Level Computer Vision and Pattern Recognition.- How and Why Pattern Recognition and Computer Vision Applications Use Graphs.- Efficient Algorithms on Trees and Graphs with Unique Node Labels.- A Generic Graph Distance Measure Based on Multivalent Matchings.- Learning from Supervised Graphs.- Special Applications.- Graph-Based and Structural Methods for Fingerprint Classification.- Graph Sequence Visualisation and its Application to Computer Network Monitoring and Abnormal Event Detection.- Clustering of Web Documents Using Graph Representations.