Knowledge Discovery in Inductive Databases (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
301
Utgivningsdatum
2007-11-01
Upplaga
2007 ed.
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Medarbetare
7Struyf, Jan
Illustrationer
X, 301 p.
Dimensioner
234 x 171 x 18 mm
Vikt
477 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783540755487
Knowledge Discovery in Inductive Databases (häftad)

Knowledge Discovery in Inductive Databases

5th International Workshop, KDID 2006 Berlin, Germany, September 18th, 2006 Revised Selected and Invited Papers

Häftad Engelska, 2007-11-01
889
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
This book constitutes the thoroughly refereed joint postproceedings of the 5th International Workshop on Knowledge Discovery in Inductive Databases, KDID 2006, held in association with ECML/PKDD. Bringing together the fields of databases, machine learning, and data mining, the papers address various current topics in knowledge discovery and data mining in the framework of inductive databases such as constraint-based mining, database technology and inductive querying.
Visa hela texten

Passar bra ihop

  1. Knowledge Discovery in Inductive Databases
  2. +
  3. Relational Data Mining

De som köpt den här boken har ofta också köpt Relational Data Mining av Saso Dzeroski, Nada Lavrac (häftad).

Köp båda 2 för 2458 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Bloggat om Knowledge Discovery in Inductive Databases

Innehållsförteckning

Invited Talk.- Value, Cost, and Sharing: Open Issues in Constrained Clustering.- Contributed Papers.- Mining Bi-sets in Numerical Data.- Extending the Soft Constraint Based Mining Paradigm.- On Interactive Pattern Mining from Relational Databases.- Analysis of Time Series Data with Predictive Clustering Trees.- Integrating Decision Tree Learning into Inductive Databases.- Using a Reinforced Concept Lattice to Incrementally Mine Association Rules from Closed Itemsets.- An Integrated Multi-task Inductive Database VINLEN: Initial Implementation and Early Results.- Beam Search Induction and Similarity Constraints for Predictive Clustering Trees.- Frequent Pattern Mining and Knowledge Indexing Based on Zero-Suppressed BDDs.- Extracting Trees of Quantitative Serial Episodes.- IQL: A Proposal for an Inductive Query Language.- Mining Correct Properties in Incomplete Databases.- Efficient Mining Under Rich Constraints Derived from Various Datasets.- Three Strategies for Concurrent Processing of Frequent Itemset Queries Using FP-Growth.- Discussion Paper.- Towards a General Framework for Data Mining.