Basic Stochastic Processes (häftad)
Fler böcker inom
Häftad (Paperback / softback)
Antal sidor
1st ed. 1999. Corr. 3rd printing 2000
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Zastawniak, T.
21 Abb
X, 226 p.
240 x 180 x 20 mm
462 g
Antal komponenter
1 Paperback / softback
Basic Stochastic Processes (häftad)

Basic Stochastic Processes

A Course Through Exercises

Häftad Engelska, 1998-10-01
Skickas inom 7-10 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.
Visa hela texten

Passar bra ihop

  1. Basic Stochastic Processes
  2. +
  3. Probability Through Problems

De som köpt den här boken har ofta också köpt Probability Through Problems av Marek Capinski, Tomasz Zastawniak (inbunden).

Köp båda 2 för 1648 kr


Har du läst boken? Sätt ditt betyg »

Recensioner i media

This book fulfils its aim of providing good and interesting material for advanced undergraduate study. The Times Higher Education Supplement This is probably one of the best books to begin learning about the sometimes complex topic of stochastic calculus and stochastic processes from a more mathematical approach. Some literature are often accused of unnecessarily complicating the subject when applied to areas of finance. With this book you are allowed to explore the rigorous side of stochastic calculus, yet maintain a physical insight of what is going on. The authors have concentrated on the most important and useful topics that are encountered in common physical and financial systems

Bloggat om Basic Stochastic Processes


1. Review of Probability.- 1.1 Events and Probability.- 1.2 Random Variables.- 1.3 Conditional Probability and Independence.- 1.4 Solutions.- 2. Conditional Expectation.- 2.1 Conditioning on an Event.- 2.2 Conditioning on a Discrete Random Variable.- 2.3 Conditioning on an Arbitrary Random Variable.- 2.4 Conditioning on a ?-Field.- 2.5 General Properties.- 2.6 Various Exercises on Conditional Expectation.- 2.7 Solutions.- 3. Martingales in Discrete.- 3.1 Sequences of Random Variables.- 3.2 Filtrations.- 3.3 Martingales.- 3.4 Games of Chance.- 3.5 Stopping Times.- 3.6 Optional Stopping Theorem.- 3.7 Solutions.- 4. Martingale Inequalities and Convergence.- 4.1 Doob's Martingale Inequalities.- 4.2 Doob's Martingale Convergence Theorem.- 4.3 Uniform Integrability and L1 Convergence of Martingales.- 4.4 Solutions.- 5. Markov Chains.- 5.1 First Examples and Definitions.- 5.2 Classification of States.- 5.3 Long-Time Behaviour of Markov Chains: General Case.- 5.4 Long-Time Behaviour of Markov Chains with Finite State Space.- 5.5 Solutions.- 6. Stochastic Processes in Continuous Time.- 6.1 General Notions.- 6.2 Poisson Process.- 6.2.1 Exponential Distribution and Lack of Memory.- 6.2.2 Construction of the Poisson Process.- 6.2.3 Poisson Process Starts from Scratch at Time t.- 6.2.4 Various Exercises on the Poisson Process.- 6.3 Brownian Motion.- 6.3.1 Definition and Basic Properties.- 6.3.2 Increments of Brownian Motion.- 6.3.3 Sample Paths.- 6.3.4 Doob's Maximal L2 Inequality for Brownian Motion.- 6.3.5 Various Exercises on Brownian Motion.- 6.4 Solutions.- 7. Ito Stochastic Calculus.- 7.1 Ito Stochastic Integral: Definition.- 7.2 Examples.- 7.3 Properties of the Stochastic Integral.- 7.4 Stochastic Differential and Ito Formula.- 7.5 Stochastic Differential Equations.- 7.6 Solutions.