Micromechanics and Nanosimulation of Metals and Composites (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
420
Utgivningsdatum
2010-10-19
Upplaga
2009
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Medarbetare
Mishnaevsky, Leon
Illustrationer
43 Tables, black and white; XV, 420 p.
Dimensioner
234 x 156 x 23 mm
Vikt
608 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783642097454

Micromechanics and Nanosimulation of Metals and Composites

Advanced Methods and Theoretical Concepts

Häftad,  Engelska, 2010-10-19
2334
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 2 format & utgåvor
The strength of metallic materials determines the usability and reliability of all the machines, tools and equipment around us. Yet, the question about which mechanisms control the strength and damage resistance of materials and how they can be optimised remains largely unanswered. How do real, heterogeneous ma- rials deform and fail? Why can a small modification of the microstructure increase the strength and damage resistance of materials manifold? How can the strength of heterogeneous materials be predicted? The purpose of this book is to present different experimental and computational analysis methods of micromechanics of damage and strength of materials and to demonstrate their applications to various micromechanical problems. This book summarizes at a glance some of the publications of the Computational Mechanics Group at the IMWF/MPA Stuttgart, dealing with atomistic, micro- and meso- chanical modelling and experimental analysis of strength and damage of metallic materials. In chapter 1, the micromechanisms of damage and fracture in different groups of materials are investigated experimentally, using direct observations and inverse analysis. The interaction of microstructural elements with the evolving damage is studied in these experiments. Chapter 2 presents different approaches to the - cromechanical simulation of composite materials: embedded unit cells, multiphase finite elements and multiparticle unit cells. Examples of the application of these models to the analysis of deformation and damage in different materials are given. Chapter 3 deals with the methods of numerical modelling of damage evolution and crack growth in heterogeneous materials.
Visa hela texten

Passar bra ihop

  1. Micromechanics and Nanosimulation of Metals and Composites
  2. +
  3. The Anxious Generation

De som köpt den här boken har ofta också köpt The Anxious Generation av Jonathan Haidt (inbunden).

Köp båda 2 för 2623 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Övrig information

Siegfried Schmauder Professor Dr. Siegfried Schmauder is currently a Professor of Materials Science and Strength of Materials, at the University of Stuttgart, Germany. He graduated in Mathematics from the University of Stuttgart in 1981, and received his Dr. rer. nat. degree from the same University in 1988. After his work as a research group leader at the Max-Planck-Insitute for Metals Research and postdoctoral research stays at the .Tokyo and at the University of California at Santa Barbara (UCSB), USA, he accepted an offer to become a Professor at the State Materials testing Agency (MPA), University of Stuttgart. He is an Editor-in-Chief of the Journal Computational Materials Science, and author of more than 300 research papers in the field of nano- and micromechanics. Leon Mishnaevsky Jr. Leon Mishnaevsky Jr. is a Senior Scientist at the Ris National Laboratory, Denmark. Prior to joining Ris, he worked as a research scientist and later as a Heisenberg Fellow at the University of Stuttgart, and at the Darmstadt University of Technology. LM received his Dr. -Ing. Habil. degree in Mechanics from the Darmstadt University of Technology, Germany, and his doctorate from the USSR Academy of Sciences. He has held visiting professor/visiting scholar positions at M.I.T. and Rutgers (USA), University of Tokyo (Japan), China University of Mining and Technology (China) and Ecole Nationale Superieure d'Arts et Metiers (France). He published books on "Computational mesomechanics of composites" and "Damage and fracture in heterogeneous materials", and over 100 research papers in different areas of computational mechanics of materials, micromechanics and mechanical engineering.

Innehållsförteckning

Micromechanical Experiments.- Micromechanical Simulation of Composites.- Simulation of Damage and Fracture.- Complex, Graded and Interpenetrating Microstructures.- Atomistic and Dislocation Modelling.