Machine Learning (häftad)
Fler böcker inom
Format
Häftad (Paperback)
Språk
Engelska
Antal sidor
179
Utgivningsdatum
2010-11-30
Upplaga
Softcover reprint of hardcover 1st ed. 2008
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Illustrationer
53 black & white illustrations
Antal komponenter
1
Komponenter
Paperback
ISBN
9783642098345
Machine Learning (häftad)

Machine Learning

Modeling Data Locally and Globally

Häftad Engelska, 2010-11-30
2219
Tillfälligt slut – klicka "Bevaka" för att få ett mejl så fort boken går att köpa igen.
Machine Learning - Modeling Data Locally and Globally presents a novel and unified theory that tries to seamlessly integrate different algorithms. Specifically, the book distinguishes the inner nature of machine learning algorithms as either "local learning"or "global learning."This theory not only connects previous machine learning methods, or serves as roadmap in various models, but -- more importantly -- it also motivates a theory that can learn from data both locally and globally. This would help the researchers gain a deeper insight and comprehensive understanding of the techniques in this field. The book reviews current topics,new theories and applications. Kaizhu Huang was a researcher at the Fujitsu Research and Development Center and is currently a research fellow in the Chinese University of Hong Kong. Haiqin Yang leads the image processing group at HiSilicon Technologies. Irwin King and Michael R. Lyu are professors at the Computer Science and Engineering department of the Chinese University of Hong Kong.
Visa hela texten

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om Machine Learning

Innehållsförteckning

Introduction.- Global Learning vs. Local Learning: A Background Review.- A General Global Learning Model.- Learning Locally and Globally.- Application I: Imbalanced Learning.- Application II: Regression.- Summary.