Agent-Based Optimization (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
206
Utgivningsdatum
2012-12-14
Upplaga
2013 ed.
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Medarbetare
Czarnowski, Ireneusz (ed.), Jedrzejowicz, Piotr (ed.), Kacprzyk, Janusz (ed.)
Illustrationer
X, 206 p.
Dimensioner
234 x 156 x 14 mm
Vikt
481 g
Antal komponenter
1
Komponenter
1 Hardback
ISBN
9783642340963
Agent-Based Optimization (inbunden)

Agent-Based Optimization

Inbunden Engelska, 2012-12-14
1469
Skickas inom 7-10 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.
Visa hela texten

Passar bra ihop

  1. Agent-Based Optimization
  2. +
  3. Bio-inspiring Cyber Security and Cloud Services: Trends and Innovations

De som köpt den här boken har ofta också köpt Bio-inspiring Cyber Security and Cloud Services... av Aboul Ella Hassanien, Tai-Hoon Kim, Janusz Kacprzyk, Ali Ismail Awad (inbunden).

Köp båda 2 för 3338 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

Machine Learning and Multiagent Systems as Interrelated Technologies.- Ant Colony Optimization for the Multi-criteria Vehicle Navigation Problem.- Solving Instances of the Capacitated Vehicle Routing Problem Using Multi-Agent Non-Distributed and Distributed Environment.- Structure vs. Efficiency of the Cross-Entropy Based Population Learning Algorithm for Discrete-Continuous Scheduling with Continuous Resource Discretisation.- Triple-Action Agents Solving the MRCPSP/max Problem.- Team of A-Teams - a Study of the Cooperation Between Program Agents Solving Difficult Optimization Problems.- Distributed Bregman-Distance Algorithms for Min-Max Optimization.- A Probability Collectives Approach for Multi-Agent Distributed and Cooperative Optimization with Tolerance for Agent Failure.