New Frontiers in Mining Complex Patterns (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
231
Utgivningsdatum
2013-03-20
Upplaga
2013 ed.
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Medarbetare
Ras, Zbigniew (red.)
Illustratör/Fotograf
Bibliographie 57 schwarz-weiße Abbildungen
Illustrationer
57 Illustrations, black and white; X, 231 p. 57 illus.
Dimensioner
234 x 156 x 13 mm
Vikt
345 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783642373817
New Frontiers in Mining Complex Patterns (häftad)

New Frontiers in Mining Complex Patterns

First International Workshop, NFMCP 2012, Held in Conjunction with ECML/PKDD 2012, Bristol, UK, September 24, 2012, Revised Selected Papers

Häftad Engelska, 2013-03-20
539
Skickas inom 3-6 vardagar.
Fri frakt inom Sverige för privatpersoner.
This book constitutes the thoroughly refereed conference proceedings of the First International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2012, held in conjunction with ECML/PKDD 2012, in Bristol, UK, in September 2012. The 15 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on mining rich (relational) datasets, mining complex patterns from miscellaneous data, mining complex patterns from trajectory and sequence data, and mining complex patterns from graphs and networks.
Visa hela texten

Passar bra ihop

  1. New Frontiers in Mining Complex Patterns
  2. +
  3. Machine Learning and Knowledge Discovery in Databases

De som köpt den här boken har ofta också köpt Machine Learning and Knowledge Discovery in Dat... av Ulf Brefeld, Edward Curry, Elizabeth Daly, Brian MacNamee, Alice Marascu (häftad).

Köp båda 2 för 1578 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om New Frontiers in Mining Complex Patterns

Innehållsförteckning

Learning with Configurable Operators and RL-Based Heuristics.- Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution. Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.