Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
563
Utgivningsdatum
2013-10-10
Upplaga
2013 ed.
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Medarbetare
Ruiz-Shulcloper, José (ed.), Sanniti di Baja, Gabriella (ed.)
Illustrationer
170 Illustrations, black and white; XXXII, 563 p. 170 illus.
Volymtitel
Part I
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783642418211
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (häftad)

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

18th Iberoamerican Congress, CIARP 2013, Havana, Cuba, November 20-13, 2013, Proceedings, Part I

Häftad Engelska, 2013-10-10
819
Skickas inom 3-6 vardagar.
Fri frakt inom Sverige för privatpersoner.
The two-volume set LNCS 8258 and 8259 constitutes the refereed proceedings of the 18th Iberoamerican Congress on Pattern Recognition, CIARP 2013, held in Havana, Cuba, in November 2013. The 137 papers presented, together with two keynotes, were carefully reviewed and selected from 262 submissions. The papers are organized in topical sections on mathematical theory of PR, supervised and unsupervised classification, feature or instance selection for classification, image analysis and retrieval, signals analysis and processing, applications of pattern recognition, biometrics, video analysis, and data mining.
Visa hela texten

Passar bra ihop

  1. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
  2. +
  3. Pattern Recognition Applications and Methods

De som köpt den här boken har ofta också köpt Pattern Recognition Applications and Methods av Maria De Marsico, Gabriella Sanniti Di Baja, Ana Fred (häftad).

Köp båda 2 för 1408 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om Progress in Pattern Recognition, Image An...

Innehållsförteckning

Mathematical Theory of PR.- Supervised and Unsupervised Classification.- Feature or Instance Selection for Classification.- Image Analysis and Retrieval.- Signals Analysis and Processing.