Topics in Operator Theory and Interpolation (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
243
Utgivningsdatum
1988-01-01
Upplaga
1988 ed.
Förlag
Birkhauser Verlag AG
Medarbetare
Gohberg, I. (ed.)
Illustrationer
1 Illustrations, black and white; 243 p. 1 illus.
Dimensioner
244 x 170 x 13 mm
Vikt
400 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783764319601
Topics in Operator Theory and Interpolation (häftad)

Topics in Operator Theory and Interpolation

Essays dedicated to M. S. Livsic on the occasion of his 70th birthday

Häftad Engelska, 1988-01-01
1039
  • Skickas inom 10-15 vardagar.
  • Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
Content.- On skew Toeplitz Operators, I.- On local index and the cocycle property for Lefschetz numbers.- Completing a matrix so as to minimize the rank.- The generalized Schur algorithm: Approximation and hierarchy.- A new class of contractive interpolants and maximum entropy principles.- Distance formulas for operator algebras arising in optimal control problems.- On the Schur representation in the commutant lifting theorem II.- Nodes and realizations of rational matrix functions: Minimality theory and applications.- On the multiplicity of the commutant of operators.
Visa hela texten

Passar bra ihop

  1. Topics in Operator Theory and Interpolation
  2. +
  3. Operator Theory, System Theory and Related Topics

De som köpt den här boken har ofta också köpt Operator Theory, System Theory and Related Topics av Daniel Alpay, Victor Vinnikov (häftad).

Köp båda 2 för 3208 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av I Gohberg

Innehållsförteckning

Content.- On skew Toeplitz Operators, I.- On local index and the cocycle property for Lefschetz numbers.- Completing a matrix so as to minimize the rank.- The generalized Schur algorithm: Approximation and hierarchy.- A new class of contractive interpolants and maximum entropy principles.- Distance formulas for operator algebras arising in optimal control problems.- On the Schur representation in the commutant lifting theorem II.- Nodes and realizations of rational matrix functions: Minimality theory and applications.- On the multiplicity of the commutant of operators.