Strength and Toughness of Materials (inbunden)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
275
Utgivningsdatum
2004-03-01
Upplaga
2004 ed.
Förlag
Springer Verlag, Japan
Illustratör/Fotograf
300 Abb
Illustrationer
X, 275 p.
Dimensioner
234 x 156 x 18 mm
Vikt
581 g
Antal komponenter
1
Komponenter
1 Hardback
ISBN
9784431200383
Strength and Toughness of Materials (inbunden)

Strength and Toughness of Materials

Inbunden Engelska, 2004-03-01
1399
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
As the shift from the Metal Age progresses, materials engineers and materials scientists seek new analytical and design methods to create stronger and more reliable materials. Based on extensive research and developmental work done at the author's multi-disciplinary material laboratory, this graduate-level and professional reference addresses the relationship between fracture mechanisms (macroscale) and the microscopic, with the goal of explaining macroscopic fracture behavior based on a microscopic fracture mechanism. A careful fusion of mechanics and materials science, this text and monograph systematically considers an array of materials, from metals through ceramics and polymers, and demonstrates lab-tested strategies to develop desirable high-temperature materials for technological applications.
Visa hela texten

Passar bra ihop

  1. Strength and Toughness of Materials
  2. +
  3. Advances in CMP Polishing Technologies

De som köpt den här boken har ofta också köpt Advances in CMP Polishing Technologies av Toshiro Doi (inbunden).

Köp båda 2 för 2498 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om Strength and Toughness of Materials

Innehållsförteckning

1 Introduction.- 1.1 Development of Materials and their Characteristics.- 1.2 Fracture and Damage.- 1.3 Rise of Fracture Mechanics and Strengthening and Toughening.- 2 Basic Concepts of Fracture Mechanics.- 2.1 Fracture Toughness.- 2.1.1 General Concepts of Fracture Toughness from an Energy Criterion.- 2.1.2 Linear Elastic Fracture Mechanics in a Crack-tip Stress Field.- 2.1.3 Plastic Zone at Crack-tip.- 2.2 Elastic-Plastic Fracture Mechanics.- 2.3 Measurement of Fracture Toughness.- 2.4 Application of Fracture Toughness.- 3 Principles of Strength and Toughness.- 3.1 Classical Fracture Theory.- 3.2 Microstructure and Fracture Mechanism.- 3.3 Inexpensive Toughness Evaluation Method-Instrumented Charpy Impact Test.- 3.4 Specimen Size Effect and J-Q Theory.- 4 Steels.- 4.1 Solid Phase Transformation in Steels.- 4.1.1 Precipitation of Proeutectiod Ferrite.- 4.1.2 Pearlitic Transformation.- 4.1.3 Bainitic Transformation.- 4.1.4 Martensitic Transformation.- 4.2 Correlations among Strength, Fracture and Microstructures.- 4.3 Strengthening and Toughening of Practical Steels.- 4.3.1 Ferritic-Pearlitic Steel.- 4.3.2 Bainitic and Martensitic Steels.- 4.3.3 Maraging Steel.- 4.3.4 TRIP Steel.- 4.3.5 Dual Phase Steel.- 4.3.6 Controlled Rolling.- 4.4 Degradation in Steels.- 4.5 Strength and Fracture of Carburized Steel.- 5 Ductile Cast Iron.- 5.1 Fracture Mechanism in Ductile Cast Iron.- 5.2 Evaluation of Fracture Toughness.- 5.2.1 Definition of a Crack Initiation Point.- 5.2.2 Ductile-Brittle Transition Behavior.- 5.3 Influence of Microstructure on Fracture Toughness.- 5.3.1 The Effect of Matrix Microstructure.- 5.3.2 Effects of Morphology and Distribution of Graphite.- 5.4 Strengthening and Toughening of Ductile Cast Iron.- 5.4.1 Austempered Ductile Cast Iron.- 5.4.2 Strengthening and Toughening Based on Traditional Matrix Phases.- 5.5 Fatigue Characteristics of Ductile Cast Iron.- 6 Wrought Aluminum Alloys.- 6.1 Aluminum Alloys and their Features at Deformation.- 6.2 Microstructure and the Fracture Mechanism.- 6.2.1 General Relationship between Strength and Fracture in Aluminum Alloys.- 6.2.2 Formation of Voids and Secondary Phase Particles in Aluminum Alloys.- 6.2.3 Growth and Coalescence Processes of Voids.- 6.3 Ductile Fracture Details.- 6.3.1 Classification of Deformation and Fracture Mechanisms for Age Hardening-type Alloys.- 6.3.2 Ductile Fracture Theories.- 6.4 Testing Methods for Fracture Toughness of Aluminum Alloys-R Curves Method.- 6.5 Toughness of Aluminum Alloys and the Metallurgical Factors.- 6.5.1 Al-Li Alloy.- 6.5.2 Other Wrought Alloys.- 7 Cast Aluminum Alloys.- 7.1 Aluminum Alloy Casting and Solidification.- 7.2 Solidification Microstructure and Fracture Toughness.- 7.2.1 Secondary Phase Particle and Fracture.- 7.2.2 Influence of Dendrite Arm Spacing.- 7.2.3 Effects of Gas Content and Impurities.- 7.2.4 Influence of Modification Treatment.- 7.2.5 Influence of Casting Defects.- 7.3 Fatigue Characteristics.- 8 Metal Matrix Composites.- 8.1 Key Points of Composite Materials.- 8.2 General Deformation and Fracture Mode.- 8.2.1 Formation of Microdamage Caused by Deformation.- 8.2.2 Fracture Process.- 8.2.3 Crack Growth Mode under Monotonic Loading.- 8.3 Improvement of Fracture Characteristics by Controlling MMC Microstructure.- 8.3.1 Microstructural Factor of Reinforcement.- 8.3.2 Microstructural Factors About Interfaces.- 8.3.3 Microstructural Factors About the Matrix.- 8.4 Fatigue Fracture Behavior.- 8.4.1 Short Fatigue Crack.- 8.4.2 Long Fatigue Crack.- 9 Titanium Alloys.- 9.1 Mechanical Characteristics of Titanium Alloys.- 9.1.1 Mechanical Properties of Titanium Alloys.- 9.1.2 Classification of Titanium Alloys and their Mechanical Properties.- 9.2 Influence of Microstructure on Fracture Toughness.- 9.2.1 Equiaxed ? Microstructure.- 9.2.2 Acicular ? Microstructure.- 9.2.3 Microstructural Units Controlling Crack Propagation Initiation Toughness.- 9.3 Micromechanism of Crack Initiation and Crack Propagation.- 9.4 Embrittlemen