Bio-mechanisms of Swimming and Flying (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
403
Utgivningsdatum
2010-11-10
Upplaga
Softcover reprint of hardcover 1st ed. 2008
Förlag
Springer Verlag, Japan
Medarbetare
Kamimura, Shinji (ed.), Kato, Naomi (ed.)
Illustrationer
18 Illustrations, color; 290 Illustrations, black and white; XIV, 403 p. 308 illus., 18 illus. in co
Dimensioner
234 x 156 x 22 mm
Vikt
586 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9784431998297

Bio-mechanisms of Swimming and Flying

Fluid Dynamics, Biomimetic Robots, and Sports Science

Häftad,  Engelska, 2010-11-10
2403
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 2 format & utgåvor
This book covers a wide range of animals from flagellated microorganisms to marine mammals. It follows "Bio-mechanisms of Animals in Swimming and Flying" published in 2004 including 11 chapters. This time, the book includes 31 chapters on the latest researches into natural autonomous systems and locomotion in both flying and swimming organisms. The area of sports science such as analysis and simulation of human swimming is newly added. The computational frameworks for the modeling, simulation and optimization of animals in swimming and flying demonstrate an important role in the progress of interdisciplinary work in the fields of biology and engineering.
Visa hela texten

Passar bra ihop

  1. Bio-mechanisms of Swimming and Flying
  2. +
  3. Bad Therapy

De som köpt den här boken har ofta också köpt Bad Therapy av Abigail Shrier (inbunden).

Köp båda 2 för 2668 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

  • Applications to Marine Disaster Prevention

    Naomi Kato

    This book focuses on the recent results of the research project funded by a Grant-in-Aid for Scientific Research (S) of the Japan Society for the Promotion of Science (No. 23226017) from FY 2011 to FY 2015 on an autonomous spilled oil and gas trac...

Innehållsförteckning

Preface Acknowledgments Part 1 Biological Aspects of Locomotive Mechanisms and Behaviors of Animals While Swimming and Flying Chapter1: Asymmetric Swimming Motion of Singly Flagellated Bacteria near a Rigid Surface Chapter2: Properties of a Semi-dilute Suspension of Swimming Microorganisms Chapter3: Dynamics, Modeling and Real-time Observation of Galvanotaxis in Paramecium caudatum Chapter4: Object Manipulation by a Formation-Controlled Euglena Group Chapter5: Passive Mechanisms Controlling Posture and Trajectory in Swimming Fishes Chapter6: Mechanical Properties of the Caudal Fin Resulting from the Caudal Skeletal Structure of the Bluefin Tuna Chapter7: Design of Artificial Tail Flukes for a Bottlenose Dolphin Chapter8: Changes in Drag Acting on an Angled Wavy Silicon-rubber Plate as a Model of the Skin Folds of a Swimming Dolphin Chapter9: Central Nervous System Underlying Swimming Fish Chapter10: Underwater Acoustical Sensing Behavior of Porpoises Chapter11: Microstructural Approach to Developing the Resonance Model of the Indirect Flight Mechanism Part 2 Hydrodynamics of Swimming and Flying Chapter12: Studies of Hydrodynamics in Fishlike Swimming Propulsion Chapter13: Optimization of Fish Shape and Swim Mode in Fully Resolved 2-D Flow-field by Genetic Algorithm with the Least-square Prediction Method Chapter14: Modeling, Simulation and Optimization of Anguilliform Swimmers Chapter15: A Numerical Study of Hovering Aerodynamics in Flapping Insect Flight Chapter16: Stabilization of Flapping-of-Wings Flight of a Butterfly, Considering Wakes Chapter 17: 3-D Unsteady Computations of Flapping Flight in Insects, Fish, and Unmanned Vehicles Part 3 Biomimetic Swimming or Flying Robots Chapter 18: Design and Simulations of a Virtual Fishlike Robot Actuated by a Muscle Model Chapter 19: Development of Fish Robots Powered by Fuel Cells: Improvement of Swimming Ability by a Genetic Algorithm and Flow Analysis by Computational Fluid Dynamics Chapter 20: Design and Control of Biomimetic Robot Fish FAC-I Chapter 21: Thrust Force Characteristics of the Propulsion Mechanism in Fluid Using a Fin with a Dynamic Variable-Effective-Length Spring Chapter 22: Elastic Pectoral Fin Actuators for Biomimetic Underwater Vehicles Chapter 23: Design, Development, and Testing of Flapping Fins with Actively Controlled Curvature for an Unmanned Underwater Vehicle Chapter 24: Controlling Biomimetic Underwater Robots with Electronic Nervous Systems Chapter 25: Micro-energy Converter Using Insect Wings Chapter26: Clapping-wing Micro Air Vehicle of Insect Size Part 4 Sports Science Chapter 27: Study on the Application of Lagrangian Numerical Simulation to Fluid Dynamics in Sports Science Chapter 28: Rowing Velocity Prediction Program Estimating Hydrodynamic Load Acting on an Oar Blade Chapter 29: Analysis of Breast, Back and Butterfly Strokes by the Swimming Human Simulation Model SWUM Chapter 30: Research in Fluid Dynamical Specification of Hand Palms in Freestyle Swimming Chapter 31: Flexural Vibration of a Jump Ski in Flight