Solar Thermal Energy Storage (häftad)
Fler böcker inom
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
642
Utgivningsdatum
2011-10-19
Upplaga
Softcover reprint of the original 1st ed. 1985
Förlag
Springer
Medarbetare
Mullick, S.C. / Bhargava, Vijay K.
Illustrationer
XX, 642 p.
Dimensioner
234 x 156 x 34 mm
Vikt
926 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9789401088411
Solar Thermal Energy Storage (häftad)

Solar Thermal Energy Storage

Häftad Engelska, 2011-10-19
3279
Skickas inom 7-10 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
Energy Storage not only plays an important role in conservinq the energy but also improves the performance and reliability of a wide range of energy systems. Energy storagp. leads to saving of premium fuels and makes the system morA cost effective by reducing the wastage of energy. In most systems there is a mismatch between the energy supply and energy demand. The energy storage can even out this imbalance and thereby help in savings of capital costs. Enerqy storage is all the more important where the enerqy source is intermittent such as Solar Energy. The use of jntermittent energy sources is likely to grow. If more and more solar energy is to be used for domestic and industrial applications then energy storage is very crucial. If no storage is used in solar energy systems then the major part of the energy demand will be met by the back-up or auxiliary energy and therefore the so called annual solar load fract]on will be very low. In case of solar energy, both short term and long term energy storage systems can be used whjch can adjust the phase difference between solar energy supply and energy demand and can match seasonal demands to the solar availability respectively. Thermal energy storage can lead to capital cost savings, fuel savjngs, and fuel substitution in many application areas. Developing an optimum thermal storaqe system is as important an area of research as developinq an alternative source of energy.
Visa hela texten

Passar bra ihop

  1. Solar Thermal Energy Storage
  2. +
  3. Tillage for Sustainable Cropping

De som köpt den här boken har ofta också köpt Tillage for Sustainable Cropping av Sohan S Prihar, Pushap R Gajri Jr, Vijay K Arora (häftad).

Köp båda 2 för 3878 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Recensioner i media

`...compulsory reading for those doing research in solar energy storage.' International Journal of Heat Mass Transfer, 30 (1987)

Innehållsförteckning

1 Importance and modes of energy storage.- 1.1 The importance of energy storage.- 1.2 Influence of type and extent of mismatch on storage.- 1.3 Size and duration of storage.- 1.4 Applications.- 1.4.1 Stationary applications.- 1.4.2 Transport applications.- 1.5 Quality of energy and modes of energy storage.- 1.6 Thermal energy storage.- 1.6.1Sensible heat storage.- 1.6.2 Storage in phase change materials (PCM).- 1.7 Mechanical energy storage.- 1.7.1 Storage as potential energy.- 1.7.2 Storage as kinetic energy.- 1.7.3 Energy storage in a compressed gas.- 1.8 Electrical and magnetic energy storage.- 1.8.1 Storage in electrical cap ac i tors.- 1.8.2 Storage in electromagnets.- 1.8.3 Storage in magnets with superconducting coils.- 1.8.4 Storage in a battery.- 1.9 Chemical energy storage.- 1.9.1 Synthetic fuels.- 1.9.2 Thermochemical storage.- 1.9.3 Electrochemical storage.- 1.9.4 Photochemical storage.- References.- 2 Sensible heat storage.- 2.1 Sensible heat storage basics.- 2.2 Sensible heat storage and type of load.- 2.3 Sensible heat storage media.- 2.4 Well-mixed liquid storage.- 2.5 Stratified liquid storage.- 2.5.1 Analytical studies on thermally stratified hot water tanks.- 2.5.2 Experimental studies on thermally stratified hot water storage tanks.- 2.5.3 Forced stratification in liquids.- 2.6 Containers for water storage.- 2.7 Packed bed storage system.- References.- Appendix -I.- Appendix - II.- 3 Latent heat or phase change thermal energy storage.- 3.1 Basics of latent heat storage.- 3.1.1 Heat of fusion (Latent heat).- 3.1.2 Employment of latent heat storage system.- 3.2 Liquid-solid transformation.- 3.2.1 Nucleation and supercooling.- 3.2.2 The rate of crystal growth.- 3.2.3 Types of solidification or crystallization.- 3.2.4 Melting and freezing characteristics.- 3.2.5 Interpretation of freezing curves.- 3.2.6 Relative rates of heat and mass transport.- 3.2.7 Binary phase diagrams.- 3.3 Phase change materials (PCM).- 3.3.1 Solid-solid transitions.- 3.3.2 Solid-liquid transformations.- i) Salt hydrates.- ii) Other inorganic compounds.- iii) Paraffins.- iv) Non paraffin organic solids.- v) Clathrate and semi-clathrate hydrates.- vi)Eutectics.- 3.4 Selection of PCM.- 3.5 Storage in salt hydrates.- 3.5.1 Nucleation and crystallization.- 3.5.2 Incongruent melting.- 3.5.3 Thickening agents.- 3.5.4 Some promising salt hydrates and the binary phase diagrams.- 3.6 Prevention of incongruent melting and thermal cycling.- 3.6.1 Thickening agents.- 3.6.2 Extra water principle.- 3.6.3 Rolling cylinder method.- 3.6.4 Adding SrCl2 6H2 C in CaCl2 H2O system.- 3.7 Storage in paraffins.- 3.8 Heat transfer in PCM.- 3.8.1 Freezing of tops of ponds.- 3.8.2 An approximate analytical model for a periodic process.- 3.8.3 Heat-exchange with fluid-flow between trays holding PCM.- 3.9 Heat exchange arrangement and containment of PCM.- 3.9.1 Encapsulation of PCM.- 3.9.2 Containment.- 3.9.3 Compatibility.- 3.9.4 Special heat exchangers for PCM.- (A) Passive systems.- (B) Active systems.- 3.10 Storage in PCM undergoing solid-solid transition.- 3.10.1 Storage in modified high density polyethylene (HDPE).- 3.10.2 Storage in layer perovskites and other organometallic compounds.- 3.11 Heat of solution storage and heat exchangers.- 3.11.1 Crystallization from saturated solution.- 3.11.2 Heat exchangers in heat-of-solution storage system.- References.- 4 Chemical energy storage.- 4.1 Introduction.- 4.2 Selection Criterion.- 4.2.1 Thermodynamic considerations.- 4.2.2 Reversibility.- 4.2.3 Reaction rates.- 4.2.4 Controllability.- 4.2.5 Ease of storage.- 4.2.6 Safety.- 4.2.7 Availability and Cost.- 4.2.8 Product separation.- 4.2.9 Reaction with water and oxygen.- 4.2.10 Technology.- 4.2.11 Catalyst availability and lifetime.- 4.3 Energy storage in thermal dissociation type of reactions.- 4.3.1 Thermal dissociation of SO3.- 4.3.2 Dissociation of Ammonia.- 4.3.3 Thermal dissociation of inorganic hydroxides.- 4.3.4 Thermal decomposition of carbonates.- 4.3.5 D