Implicit and Explicit Semantics Integration in Proof-Based Developments of Discrete Systems (häftad)
Häftad (Paperback / softback)
Antal sidor
1st ed. 2021
Springer Verlag, Singapore
Ait-Ameur, Yamine (ed.), Nakajima, Shin (ed.), Méry, Dominique (ed.)
29 Illustrations, color; 109 Illustrations, black and white; XII, 346 p. 138 illus., 29 illus. in co
234 x 156 x 19 mm
504 g
Antal komponenter
1 Paperback / softback
Implicit and Explicit Semantics Integration in Proof-Based Developments of Discrete Systems (häftad)

Implicit and Explicit Semantics Integration in Proof-Based Developments of Discrete Systems

Communications of NII Shonan Meetings

Häftad Engelska, 2021-07-29
  • Skickas inom 5-8 vardagar.
  • Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
This book addresses mechanisms for reducing model heterogeneity induced by the absence of explicit semantics expression in the formal techniques used to specify design models. More precisely, it highlights the advances in handling both implicit and explicit semantics in formal system developments, and discusses different contributions expressing different views and perceptions on the implicit and explicit semantics. The book is based on the discussions at the Shonan meeting on this topic held in 2016, and includes contributions from the participants summarising their perspectives on the problem and offering solutions. Divided into 5 parts: domain modelling, knowledge-based modelling, proof-based modelling, assurance cases, and refinement-based modelling, and offers inspiration for researchers and practitioners in the fields of formal methods, system and software engineering, domain knowledge modelling, requirement analysis, and explicit and implicit semantics of modelling languages.
Visa hela texten

Passar bra ihop

  1. Implicit and Explicit Semantics Integration in Proof-Based Developments of Discrete Systems
  2. +
  3. Abstract State Machines, Alloy, B, TLA, VDM, and Z

De som köpt den här boken har ofta också köpt Abstract State Machines, Alloy, B, TLA, VDM, and Z av Yamine Ait Ameur, Klaus-Dieter Schewe (häftad).

Köp båda 2 för 1928 kr


Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Övrig information

Yamine Ait Ameur is a professor at Toulouse National Polytechnique Institute and a member of the TCNRS IRIT Research Institute in Computer Science. His research topics concern 1) Formal methods for validation and verification, 2) Ontology-based modelling and domain knowledge explicitation, and 3) Application domains: embedded systems, interactive systems, semantic web, cyber-physical systems, and related topics. Two main important aspects characterize his research activities. On the one hand the fundamental aspects are studied through the use of formal modelling techniques based on refinement and proof (in particular, using Event-B), explicit formalisation of semantics employing formal ontology models. On the other hand, practical aspects are addressed through the development of operational applications, allowing validation of the proposed approaches. Embedded systems in avionics and railway systems, engineering, interactive systems, CO2 capture, and cyber physical systems are some of the application domains targeted by his work. He is the author of several research papers published in international journals and in the proceedings of international conferences. He is one of the main editors of the ISO 13584 International Standard Series, commonly known as PLib (Parts Libraries) for ontologies in system engineering.Shin Nakajima is a professor at the National Institute of Informatics, Tokyo; an adjunct professor at the Graduate University for Advanced Studies; and a visiting professor at the Open University of Japan. His research topics concern formal methods, automated verification, assuring the quality of deep neural networks software, cyber-physical systems, and software-enabled innovation management. He has authored six books on those subjects. Dominique Mery has been a full professor of computing science at the University of Lorraine since 1993 and is teaching in the School of Engineering in Information Technology TELECOM Nancy. He is leading the research group MOSEL on formal methods and applications in LORIA, jointly with CNRS, INRIA, and the University of Lorraine. He has been a junior member of the Institut Universitaire de France IUF (1995-2000) and is a member of the IFIP WG 1.3 on foundations of specifications. His current scientific activities a focus on proof-based development of distributed algorithms using the refinement, as well as modelling, of cyber physical systems as medical devices. His research uses mainly the modelling language B/Event-B and related platforms. He has led the IMPEX ANR project dealing with the integration of the explicit semantics in the proof-based development of software systems. Finally, his research explores the extension of the scope of discrete modelling techniques to handle the design and modelling of hybrid systems.


Chapter 1: Modelling an e-voting domain for the formal development of a Software Product Line.- Chapter 2: Domain-specific Developments using Rodin Theories.- Chapter 3: Integrating Domain Knowledge in Formal Requirements Engineering.- Chapter 4: Operations over Lightweight Ontologies and their Implementation.- Chapter 5: Formal Ontological Analysis for Medical Protocol.- Chapter 6: Deriving Implicit Security Requirements in Safety-Explicit Formal Development of Control Systems.- Chapter 7: Towards an Integration of Probabilistic and Knowledge-Based Data Analysis Using Probabilistic Knowledge Patterns.- Chapter 8: An Explicit Semantics for Event-B Refinements.- Chapter 9: Contextual Dependency in State-based Modelling.- Chapter 10: Configuration of complex systems.- Chapter 11: Towards Making Safety Case Arguments Explicit, Precise, and Well Founded.- Chapter 12: The Indefeasibility Criterion for Assurance Cases.- Chapter 13: An Event-B development process for the distributed BIP framework.- Chapter 14: Explicit Exploration of Refinement Design in Proof-based Approach.- Chapter 15: Constructing Rigorous Sketches for Refinement-based Formal Development.