Data Mining In Time Series Databases (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
204
Utgivningsdatum
2004-06-01
Förlag
World Scientific Publishing Co Pte Ltd
Illustrationer
Illustrations
Dimensioner
229 x 157 x 18 mm
Vikt
431 g
Antal komponenter
1
ISBN
9789812382900
Data Mining In Time Series Databases (inbunden)

Data Mining In Time Series Databases

Inbunden Engelska, 2004-06-01
1099
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
Adding the time dimension to real-world databases produces Time Series Databases (TSDB) and introduces new aspects and difficulties to data mining and knowledge discovery. This book covers the state-of-the-art methodology for mining time series databases. The novel data mining methods presented in the book include techniques for efficient segmentation, indexing, and classification of noisy and dynamic time series. A graph-based method for anomaly detection in time series is described and the book also studies the implications of a novel and potentially useful representation of time series as strings. The problem of detecting changes in data mining models that are induced from temporal databases is additionally discussed.
Visa hela texten

Passar bra ihop

  1. Data Mining In Time Series Databases
  2. +
  3. Search Engines, Link Analysis, and User's Web Behavior

De som köpt den här boken har ofta också köpt Search Engines, Link Analysis, and User's Web B... av George Meghabghab, Abraham Kandel (häftad).

Köp båda 2 för 4068 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Bloggat om Data Mining In Time Series Databases

Innehållsförteckning

A Survey of Recent Methods for Efficient Retrieval of Similar Time Sequences (H M Lie); Indexing of Compressed Time Series (E Fink & K Pratt); Boosting Interval-Based Literal: Variable Length and Early Classification (J J Rodriguez Diez); Segmenting Time Series: A Survey and Novel Approach (E Keogh et al); Indexing Similar Time Series under Conditions of Noise (M Vlachos et al); Classification of Events in Time Series of Graphs (H Bunke & M Kraetzl); Median Strings - A Review (X Jiang et al); Change Detection in Classification Models of Data Mining (G Zeira et al).