Clustering Challenges In Biological Networks (inbunden)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
348
Utgivningsdatum
2009-02-12
Förlag
World Scientific Publishing Co Pte Ltd
Medarbetare
Butenko, Sergiy (ed.), CHAOVALITWONGSE, W ART (ed.), PARDALOS, PANOS M (ed.)
Illustrationer
Illustrations (some col.)
Dimensioner
237 x 161 x 21 mm
Vikt
672 g
Antal komponenter
1
Komponenter
HC gerader Rücken kaschiert
ISBN
9789812771650
Clustering Challenges In Biological Networks (inbunden)

Clustering Challenges In Biological Networks

Inbunden Engelska, 2009-02-12
1519
Skickas inom 7-10 vardagar.
Fri frakt inom Sverige för privatpersoner.
Beställ boken senast måndag 7 december för leverans innan julafton
Finns även som
Visa alla 2 format & utgåvor
This volume presents a collection of papers dealing with various aspects of clustering in biological networks and other related problems in computational biology. It consists of two parts, with the first part containing surveys of selected topics and the second part presenting original research contributions. This book will be a valuable source of material to faculty, students, and researchers in mathematical programming, data analysis and data mining, as well as people working in bioinformatics, computer science, engineering, and applied mathematics. In addition, the book can be used as a supplement to any course in data mining or computational/systems biology.
Visa hela texten

Passar bra ihop

  1. Clustering Challenges In Biological Networks
  2. +
  3. Optimization in Large Scale Problems

De som köpt den här boken har ofta också köpt Optimization in Large Scale Problems av Mahdi Fathi, Marzieh Khakifirooz, Panos M Pardalos (inbunden).

Köp båda 2 för 2338 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Innehållsförteckning

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning (Tan & Floudas); Mathematical Programming Methods for Comparison Problems in Biocomputing (Oliveira); Classification vs. Clustering: Analyzing Gene Functionality (Perlich); A Projected Clustering Algorithm and Its Biological Application (Deng & Wu); Clique Relaxation Models of Clusters in Biological Networks (Butenko et al.); Analysis of Interaction Networks from Clusters of Co-expressed Genes: A Case Study on Inflammation (Androulakis et al.); Diversity Graphs (Blain et al.); Fixed-Parameter Algorithms for Graph-Modeled Data Clustering (Huffner et al.); Relating Subjective and Objective Pharmacovigilance Association Measures (Pearson); A Novel Similarity-based Modularity Function for Graph Partitioning (Feng et al.); Graph Algorithms for Integrated Biological Analysis, with Applications to Type 1 Diabetes Data (Eblen et al.); Graph Modeling for Clustering and Motif Findings in Biological Data (Zaslavsky & Sighn); Clustering Approach for Predicting Functions of Unknown mRNA Molecules from Their Dissipative Structures Observed in Glucose-Derepressed Saccharomyces cerevisiae (Sung et al.).