Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 1: Theory And Methods (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
200
Utgivningsdatum
2011-03-02
Förlag
World Scientific Publishing Co Pte Ltd
Illustrationer
illustrations
Volymtitel
Volume 1 Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 1: Theory And Methods Theory and Methods
Dimensioner
231 x 190 x 18 mm
Vikt
658 g
Antal komponenter
1
ISBN
9789814324380
Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 1: Theory And Methods (inbunden)

Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 1: Theory And Methods

Inbunden Engelska, 2011-03-02
739
Skickas inom 7-10 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
Support Vector Machines (SVMs) are among the most important recent developments in pattern recognition and statistical machine learning. They have found a great range of applications in various fields including biology and medicine. However, biomedical researchers often experience difficulties grasping both the theory and applications of these important methods because of lack of technical background. The purpose of this book is to introduce SVMs and their extensions and allow biomedical researchers to understand and apply them in real-life research in a very easy manner. The book is to consist of two volumes: theory and methods (Volume 1) and case studies (Volume 2).
Visa hela texten

Passar bra ihop

  1. Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 1: Theory And Methods
  2. +
  3. Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 2: Case Studies And Benchmarks

De som köpt den här boken har ofta också köpt Gentle Introduction To Support Vector Machines ... av Alexander Statnikov, Constantin F Aliferis, Douglas P Hardin, Isabelle Guyon (inbunden).

Köp båda 2 för 1438 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Innehållsförteckning

Necessary Mathematical Concepts; Support Vector Machines (SVMs) for Binary Classification: Classical Formulation; Basic Principles of Statistical Machine Learning; Model Selection for SVMs; SVMs for Multi-Category Classification; Support Vector Regression (SVR); Novelty Detection with SVM-Based Methods; Support Vector Clustering; SVM-Based Variable Selection; Computing Posterior Class Probabilities For SVM Classifiers.