Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 2: Case Studies And Benchmarks (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Antal sidor
212
Utgivningsdatum
2013-05-06
Förlag
World Scientific Publishing Co Pte Ltd
Volymtitel
Volume 2 Case Studies and Benchmarks
Antal komponenter
1
ISBN
9789814324397
Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 2: Case Studies And Benchmarks (inbunden)

Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 2: Case Studies And Benchmarks

Inbunden Engelska, 2013-05-06
699
Skickas inom 7-10 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 2 format & utgåvor
Support Vector Machines (SVMs) are among the most important recent developments in pattern recognition and statistical machine learning. They have found a great range of applications in various fields including biology and medicine. However, biomedical researchers often experience difficulties grasping both the theory and applications of these important methods because of lack of technical background. The purpose of this book is to introduce SVMs and their extensions and allow biomedical researchers to understand and apply them in real-life research in a very easy manner. The book is to consist of two volumes: theory and methods (Volume 1) and case studies (Volume 2).
Visa hela texten

Passar bra ihop

  1. Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 2: Case Studies And Benchmarks
  2. +
  3. Gentle Introduction To Support Vector Machines In Biomedicine, A - Volume 1: Theory And Methods

De som köpt den här boken har ofta också köpt Gentle Introduction To Support Vector Machines ... av Alexander Statnikov, Constantin F Aliferis, Douglas P Hardin, Isabelle Guyon (inbunden).

Köp båda 2 för 1438 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Innehållsförteckning

Preliminaries: Introduction and Book Overview; Methods Used in this Book; Case Studies and Comparative Evaluation in High-Throughput Genomic Data: Application and Comparison of SVMs and Other Methods for Multicategory Microarray-Based Cancer Classification; Comparison of SVMs and Random Forests for Microarray-Based Cancer Classification; Comparison of SVMs and Kernel Ridge Regression for Microarray-Based Cancer Classification (Contributed by Zhiguo Li); Application and Comparison of SVMs and Other Methods for Multicategory Classification in Microbiomics (Contributed by Mikael Henaff, Kranti Konganti, Varun Narendra, Alexander V Alekseyenko); Application to Assessment of Plasma Proteome Stability; Case Studies and Comparative Evaluation in Text Data: Application and Comparison of SVMs and Other Methods for Retrieving High-Quality Content-Specific Articles (Contributed by Yindalon Aphinyanaphongs); Application and Comparison of SVMs and Other Methods for Identifying Unproven Cancer Treatments on the Web (Contributed by Yindalon Aphinyanaphongs); Application to Predicting Future Article Citations (Contributed by Lawrence Fu); Application to Classifying Instrumentality of Article Citations (Contributed by Lawrence Fu); Application and Comparison of SVMs and Other Methods for Identifying Drug - Drug Interactions-Related Literature (Contributed by Stephany Duda); Case Studies with Clinical Data: Application to Predicting Clinical Laboratory Values; Application to Modeling Clinical Judgment and Guideline Compliance in the Diagnosis of Melanoma (Contributed by Andrea Sboner); Other Comparative Evaluation Studies of Broad Applicability: Using SVMs for Causal Variable Selection; Application and Comparison of SVM-RFE and GLL Methods.