Dual Sets Of Envelopes And Characteristic Regions Of Quasi-polynomials (e-bok)
Format
E-bok
Filformat
PDF med Adobe-kryptering
Om Adobe-kryptering
PDF-böcker lämpar sig inte för läsning på små skärmar, t ex mobiler.
Nedladdning
Kan laddas ned under 24 månader, dock max 3 gånger.
Språk
Engelska
Antal sidor
236
Utgivningsdatum
2009-05-29
Förlag
World Scientific Publishing Company
ISBN
9789814467599
Dual Sets Of Envelopes And Characteristic Regions Of Quasi-polynomials (e-bok)

Dual Sets Of Envelopes And Characteristic Regions Of Quasi-polynomials (e-bok)

E-bok (PDF - DRM), Engelska, 2009-05-29
379
Laddas ned direkt
Läs i vår app för iPhone, iPad och Android
Finns även som
Visa alla 2 format & utgåvor
Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves associated with the functions under investigation.In this book, we present a formal theory of the Cheng-Lin envelope method, which is completely new, yet simple and precise. This method is both simple - since only basic Calculus concepts are needed for understanding - and precise, since necessary and sufficient conditions can be obtained for functions such as polynomials containing more than four parameters.Since the underlying principles are relatively simple, this book is useful to college students who want to see immediate applications of what they learn in Calculus; to graduate students who want to do research in functional equations; and to researchers who want references on roots of quasi-polynomials encountered in the theory of difference and differential equations.
Visa hela texten

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

  • Analytic Solutions Of Functional Equations

    Cheng Sui Sun Cheng, Li Wenrong Li

    This book presents a self-contained and unified introduction to the properties of analytic functions. Based on recent research results, it provides many examples of functional equations to show how analytic solutions can be found.Unlike in other b...