Nature-Inspired Computation and Swarm Intelligence (häftad)
Fler böcker inom
Häftad (Paperback)
Antal sidor
Academic Press
Yang, Xin-She (ed.)
Approx. 150 illustrations; Illustrations, unspecified
235 x 191 x 42 mm
1097 g
Antal komponenter
3:B&W 7.5 x 9.25 in or 235 x 191 mm Perfect Bound on White w/Gloss Lam
Nature-Inspired Computation and Swarm Intelligence (häftad)

Nature-Inspired Computation and Swarm Intelligence

Algorithms, Theory and Applications

Häftad Engelska, 2020-04-10
Skickas inom 10-15 vardagar.
Fri frakt inom Sverige för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging.

Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation.

Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence.

  • Introduces nature-inspired algorithms and their fundamentals, including: particle swarm optimization, bat algorithm, cuckoo search, firefly algorithm, flower pollination algorithm, differential evolution and genetic algorithms as well as multi-objective optimization algorithms and others
  • Provides a theoretical foundation and analyses of algorithms, including: statistical theory and Markov chain theory on the convergence and stability of algorithms, dynamical system theory, benchmarking of optimization, no-free-lunch theorems, and a generalized mathematical framework
  • Includes a diversity of case studies of real-world applications: feature selection, clustering and classification, tuning of restricted Boltzmann machines, travelling salesman problem, classification of white blood cells, music generation by artificial intelligence, swarm robots, neural networks, engineering designs and others
Visa hela texten

Passar bra ihop

  1. Nature-Inspired Computation and Swarm Intelligence
  2. +
  3. Nature-Inspired Metaheuristic Algorithms

De som köpt den här boken har ofta också köpt Nature-Inspired Metaheuristic Algorithms av Xin-She Yang (häftad).

Köp båda 2 för 1398 kr


Har du läst boken? Sätt ditt betyg »

Bloggat om Nature-Inspired Computation and Swarm Int...

Övrig information

Xin-She Yang obtained his DPhil in Applied Mathematics from the University of Oxford. He then worked at Cambridge University and National Physical Laboratory (UK) as a Senior Research Scientist. He is currently a Reader at Middlesex University London, Adjunct Professor at Reykjavik University (Iceland) and Guest Professor at Xi'an Polytechnic University (China). He is an elected Bye-Fellow at Downing College, Cambridge University. He is also the IEEE CIS Chair for the Task Force on Business Intelligence and Knowledge Management, and the Editor-in-Chief of International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO).


1. Nature-Inspired Computation and Swarm Intelligence 2. Bat Algorithm and Cuckoo Search Algorithms 3. Firefly Algorithm and Flower Pollination Algorithm 4. Bio-inspired Algorithms: Principles, Implementation and Applications to wireless communicatinon

Part II: Theory and Analysis 5. Mathematical Foundations for Algorithm Analysis 6. Probability Theory for Analysing Nature-Inspired Algorithms 7. Theoretical Framework for Algorithm Analysis

Part III: Applications 8. Tuning Restricted Boltzmann Machines 9. Traveling Salesman Problem: Review and New Results 10. Clustering with Nature Inspired Metaheuristics 11. Bat Algorithm for Feature Selection and White Blood Cell Classification 12. Modular Granular Neural Networks Optimisation using the Firefly Algorithm applied to Time Series Prediction 13. Artificail Intelligence Methods for Music generation: A review and future perspectives 14. Optimized controller design for island microgrid employing non-dominated sorting firefly Algorithm (NSFA) 15. Swarm Robotics: A case study -- Bat robotics 16. Electrical Harmonies estimation in power systems using bat algorithm 17. CSBIIST: Cuckoo Search based intelligent Image segmentation technique 18. Improving Genetic Algorithm Solution's Performance for Optimal Order Allocation in an E-Market with the Pareto Optimal Set 19. Multi-Robot Coordination Through Bio-Inspired Strategies 20. Optimization in Probabilistic Domains: An Engineering Approach