Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXII (häftad)
Format
Häftad (Paperback / softback)
Språk
Engelska
Antal sidor
113
Utgivningsdatum
2017-08-10
Upplaga
1st ed. 2017
Förlag
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Medarbetare
Hameurlain, Abdelkader (ed.), Küng, Josef (ed.), Wagner, Roland (ed.), Madria, Sanjay (ed.), Hara, Takahiro (ed.)
Illustratör/Fotograf
Bibliographie
Illustrationer
34 Illustrations, black and white; VII, 113 p. 34 illus.
Dimensioner
234 x 156 x 7 mm
Vikt
186 g
Antal komponenter
1
Komponenter
1 Paperback / softback
ISBN
9783662556078
Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXII (häftad)

Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXII

Special Issue on Big Data Analytics and Knowledge Discovery

Häftad Engelska, 2017-08-10
959
Skickas inom 10-15 vardagar.
Gratis frakt inom Sverige över 159 kr för privatpersoner.
Finns även som
Visa alla 1 format & utgåvor
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This volume, the 32nd issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, focuses on Big Data Analytics and Knowledge Discovery, and contains extended and revised versions of five papers selected from the 17th International Conference on Big Data Analytics and Knowledge Discovery, DaWaK 2015, held in Valencia, Spain, during September 1-4, 2015. The five papers focus on the exact detection of information leakage, the binary shapelet transform for multiclass time series classification, a discrimination-aware association rule classifier for decision support (DAAR), new word detection and tagging on Chinese Twitter, and on-demand snapshot maintenance in data warehouses using incremental ETL pipelines, respectively. discovery,="" contains="" extended="" revised="" versions="" five="" papers="" selected="" from="" 17th="" international="" conference="" discovery="" (dawak="" 2015),="" held="" in="" valencia,="" spain,="" during="" september="" 1-4,="" 2015.="" focus="" exact="" detection="" information="" leakage,="" binary="" shapelet="" transform="" for="" multiclass="" time="" series="" classification,="" a="" discrimination-aware="" association="" rule="" classifier="" decision="" support="" (daar),="" new="" word="" tagging="" chinese="" twitter,="" on-demand="" snapshot="" maintenance="" warehouses="" using="" incremental="" etl="" pipelines,="" respectively.
Visa hela texten

Passar bra ihop

  1. Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXII
  2. +
  3. Database and Expert Systems Applications

De som köpt den här boken har ofta också köpt Database and Expert Systems Applications av Mohamed Ibrahim, Josef Kung, Norman Revell (häftad).

Köp båda 2 för 2518 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Innehållsförteckning

Exact Detection of Information Leakage: Decidability and Complexity.- Binary Shapelet Transform for Multiclass Time Series Classification.- DAAR: A Discrimination-Aware Association Rule Classifier for Decision Support.- New Word Detection and Tagging on Chinese Twitter Stream.- On-Demand Snapshot Maintenance in Data Warehouses Using Incremental ETL Pipeline.