Algebraic Number Theory and Fermat's Last Theorem (häftad)
Fler böcker inom
Format
E-bok
Filformat
PDF med LCP-kryptering (0.0 MB)
Om LCP-kryptering
PDF-böcker lämpar sig inte för läsning på små skärmar, t ex mobiler.
Nedladdning
Kan laddas ned under 24 månader, dock max 6 gånger.
Språk
Engelska
Antal sidor
504
Utgivningsdatum
2025-02-07
Förlag
CRC Press
ISBN
9781040226841

Algebraic Number Theory and Fermat's Last Theorem E-bok

E-bok (PDF, LCP),  Engelska, 2025-02-07
903
Läs i Bokus Reader för iOS och Android
Finns även som
Visa alla 4 format & utgåvor
Updated to reflect current research and extended to cover more advanced topics as well as the basics, Algebraic Number Theory and Fermat's Last Theorem, Fifth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics-the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers, initially from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work. New to the Fifth Edition Pell's Equation x^2-dy^2=1: all solutions can be obtained from a single `fundamental' solution, which can be found using continued fractions. Galois theory of number field extensions, relating the field structure to that of the group of automorphisms. More material on cyclotomic fields, and some results on cubic fields. Advanced properties of prime ideals, including the valuation of a fractional ideal relative to a prime ideal, localisation at a prime ideal, and discrete valuation rings. Ramification theory, which discusses how a prime ideal factorises when the number field is extended to a larger one. A short proof of the Quadratic Reciprocity Law based on properties of cyclotomic fields. This Valuations and p-adic numbers. Topology of the p-adic integers. Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna