Machine Learning Design Patterns (häftad)
Fler böcker inom
Format
E-bok
Filformat
PDF med LCP-kryptering (0.0 MB)
Om LCP-kryptering
PDF-böcker lämpar sig inte för läsning på små skärmar, t ex mobiler.
Nedladdning
Kan laddas ned under 24 månader, dock max 6 gånger.
Språk
Engelska
Antal sidor
408
Utgivningsdatum
2020-10-15
Förlag
O'Reilly Media
ISBN
9781098115753

Machine Learning Design Patterns E-bok

E-bok (PDF, LCP),  Engelska, 2020-10-15
629
Läs i Bokus Reader för iOS och Android
Finns även som
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.You'll learn how to:Identify and mitigate common challenges when training, evaluating, and deploying ML modelsRepresent data for different ML model types, including embeddings, feature crosses, and moreChoose the right model type for specific problemsBuild a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuningDeploy scalable ML systems that you can retrain and update to reflect new dataInterpret model predictions for stakeholders and ensure models are treating users fairly

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna