Linear Algebra (inbunden)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Serie
Cambridge Mathematical Textbooks
Utgivningsdatum
2018-05-24
Förlag
Cambridge University Press
Dimensioner
257 x 183 x 25 mm
Vikt
1090 g
ISBN
9781107177901

Linear Algebra

Inbunden,  Engelska, 2018-05-24
778
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.

Passar bra ihop

  1. Linear Algebra
  2. +
  3. Braiding Sweetgrass

De som köpt den här boken har ofta också köpt Braiding Sweetgrass av Robin Wall Kimmerer (häftad).

Köp båda 2 för 907 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

  • Random Matrix Theory of the Classical Compact Groups

    Elizabeth S Meckes, Elizabeth S Meckes

    This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, phy...

Övrig information

Elizabeth S. Meckes is Associate Professor at Case Western Reserve University, Ohio. Her research is in probability and analysis, with an emphasis on random matrix theory. She received her bachelor's (2001) and master's (2002) degrees at Case Western Reserve University, and her doctoral degree (2006) at Stanford University. She is currently writing a monograph on random matrices (Cambridge, forthcoming). Mark W. Meckes is Associate Professor at Case Western Reserve University, Ohio. His research is in analysis and probability, focusing on random matrix theory and metric geometry. He received his bachelor's (1999) and doctoral (2003) degrees at Case Western Reserve University, Ohio.