High-Dimensional Probability (inbunden)
Format
Inbunden (Hardback)
Språk
Engelska
Serie
Cambridge Series in Statistical and Probabilistic Mathematics
Utgivningsdatum
2018-09-27
Förlag
Cambridge University Press
Dimensioner
260 x 185 x 30 mm
Vikt
707 g
ISBN
9781108415194

High-Dimensional Probability

An Introduction with Applications in Data Science

Inbunden,  Engelska, 2018-09-27
763
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
High-dimensional probability offers insight into the behavior of random vectors, random matrices, random subspaces, and objects used to quantify uncertainty in high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends itself to applications in mathematics, statistics, theoretical computer science, signal processing, optimization, and more. It is the first to integrate theory, key tools, and modern applications of high-dimensional probability. Concentration inequalities form the core, and it covers both classical results such as Hoeffding's and Chernoff's inequalities and modern developments such as the matrix Bernstein's inequality. It then introduces the powerful methods based on stochastic processes, including such tools as Slepian's, Sudakov's, and Dudley's inequalities, as well as generic chaining and bounds based on VC dimension. A broad range of illustrations is embedded throughout, including classical and modern results for covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, machine learning, compressed sensing, and sparse regression.

Passar bra ihop

  1. High-Dimensional Probability
  2. +
  3. I Regret Almost Everything: A Memoir

De som köpt den här boken har ofta också köpt I Regret Almost Everything: A Memoir av Keith McNally (inbunden).

Köp båda 2 för 1092 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Övrig information

Roman Vershynin is Professor of Mathematics at the University of California, Irvine. He studies random geometric structures across mathematics and data sciences, in particular in random matrix theory, geometric functional analysis, convex and discrete geometry, geometric combinatorics, high-dimensional statistics, information theory, machine learning, signal processing, and numerical analysis. His honors include an Alfred Sloan Research Fellowship in 2005, an invited talk at the International Congress of Mathematicians in Hyderabad in 2010, and a Bessel Research Award from the Humboldt Foundation in 2013. His 'Introduction to the Non-Asymptotic Analysis of Random Matrices' has become a popular educational resource for many new researchers in probability and data science.