Statistical Learning with Sparsity (häftad)
Fler böcker inom
Format
Inbunden (Hardback)
Språk
Engelska
Serie
Chapman & Hall CRC Monographs on Statistics and Applied Probability
Antal sidor
367
Utgivningsdatum
2015-05-07
Förlag
Taylor & Francis Inc
Dimensioner
260 x 162 x 15 mm
Vikt
763 g
ISBN
9781498712163

Statistical Learning with Sparsity

The Lasso and Generalizations

Inbunden,  Engelska, 2015-05-07
1538
  • Skickas från oss inom 7-10 vardagar.
  • Fri frakt över 249 kr för privatkunder i Sverige.
Finns även som
Visa alla 3 format & utgåvor
Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of ?1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.

Passar bra ihop

  1. Statistical Learning with Sparsity
  2. +
  3. Braiding Sweetgrass

De som köpt den här boken har ofta också köpt Braiding Sweetgrass av Robin Wall Kimmerer (häftad).

Köp båda 2 för 1667 kr

Kundrecensioner

Har du läst boken? Sätt ditt betyg »

Fler böcker av författarna

Övrig information

Trevor Hastie is the John A. Overdeck Professor of Statistics at Stanford University. Prior to joining Stanford University, Professor Hastie worked at AT&T Bell Laboratories, where he helped develop the statistical modeling environment popular in the R computing system. Professor Hastie is known for his research in applied statistics, particularly in the fields of data mining, bioinformatics, and machine learning. He has published five books and over 180 research articles in these areas. In 2014, he received the Emanuel and Carol Parzen Prize for Statistical Innovation. He earned a PhD from Stanford University. Robert Tibshirani is a professor in the Departments of Statistics and Health Research and Policy at Stanford University. He has authored five books, co-authored three books, and published over 200 research articles. He has made important contributions to the analysis of complex datasets, including the lasso and significance analysis of microarrays (SAM). He also co-authored the first study that linked cell phone usage with car accidents, a widely cited article that has played a role in the introduction of legislation that restricts the use of phones while driving. Professor Tibshirani was a recipient of the prestigious COPSS Presidents' Award in 1996 and was elected to the National Academy of Sciences in 2012. Martin Wainwright is a professor in the Department of Statistics and the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. Professor Wainwright is known for theoretical and methodological research at the interface between statistics and computation, with particular emphasis on high-dimensional statistics, machine learning, graphical models, and information theory. He has published over 80 papers and one book in these areas, received the COPSS Presidents' Award in 2014, and was a section lecturer at the International Congress of Mathematicians in 2014. He received PhD in EECS from the Massachusetts Institute of Technology (MIT).